Previous |  Up |  Next

Article

Title: Contaminant transport with adsorption in dual-well flow (English)
Author: Kačur, Jozef
Author: Keer, Roger Van
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 48
Issue: 6
Year: 2003
Pages: 525-536
Summary lang: English
.
Category: math
.
Summary: Numerical approximation schemes are discussed for the solution of contaminant transport with adsorption in dual-well flow. The method is based on time stepping and operator splitting for the transport with adsorption and diffusion. The nonlinear transport is solved by Godunov’s method. The nonlinear diffusion is solved by a finite volume method and by Newton’s type of linearization. The efficiency of the method is discussed. (English)
Keyword: nonlinear transport
Keyword: operator splitting
Keyword: transport of contaminants
Keyword: dual-well flow
MSC: 30C20
MSC: 65M06
MSC: 65M25
MSC: 76M12
MSC: 76M20
MSC: 76S05
idZBL: Zbl 1099.76064
idMR: MR2025960
DOI: 10.1023/B:APOM.0000024491.41850.71
.
Date available: 2009-09-22T18:15:43Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134548
.
Reference: [1] J.  Bear: Dynamics of Fluid in Porous Media.Elsevier, New York, 1972.
Reference: [2] D.  Constales, J. Kačur, and R. Van Keer: Parameter identification by a single injection-extraction well.Inverse problems 18 (2002), 1605–1620. MR 1955908, 10.1088/0266-5611/18/6/312
Reference: [3] D. Constales, J. Kačur and B. Malengier: Precise numerical scheme for contaminant transport in dual-well flow.Water Resources Research, Accepted.
Reference: [4] R. J.  LeVeque: Numerical Methods for Conservation Laws.Birkhäuser Verlag, Basel, 1990. Zbl 0723.65067, MR 1077828
Reference: [5] W.  Jäger, J.  Kačur: Solution of doubly nonlinear and degenerate parabolic problems by relaxation scheme.Math. Model. Numer. Anal. 29 (1995), 605–627. MR 1352864, 10.1051/m2an/1995290506051
Reference: [6] J. Kačur: Solution to strongly nonlinear parabolic problems by a linear approximation scheme.IMA J.  Num. Anal. 19 (1999), 119–154. MR 1670689, 10.1093/imanum/19.1.119
Reference: [7] J.  Kačur, P.  Frolkovič: Semi-analytical solutions for contaminant transport with nonlinear sorption in 1D.SFB 359, Vol.  24, University of Heidelberg, 2002, pp. 1–20, preprint. MR 2261836
Reference: [8] M. G. Crandall, A.  Majda: The method of fractional steps for conservation laws.Numer. Math. 34 (1980), 285–314. MR 0571291, 10.1007/BF01396704
Reference: [9] L. W.  Gelhar, M. A.  Collins: General analysis of longitudinal dispersion in nonuniform flow.Water Resour. Res. 7 (1971), 1511–1521. 10.1029/WR007i006p01511
Reference: [10] H. M.  Hajdjema: Analytic Modelling of Groundwater Flow.Academic Press, New York, 1995.
Reference: [11] R.  Haggerty, S. A. McKenna, and L. C.  Meigs: On the late-time behavior of tracer test breakthrough curves.Water Resour. Res. 36 (2000), 3467–3479. 10.1029/2000WR900214
Reference: [12] R.  Haggerty, S. W.  Fleming, L. C. Meigs, and S. A.  McKenna: Tracer tests in a fractured dolomite  2: Analysis of mass transfer in single-well injection-withdrawal tests.Water Resources Research 37 (2001), 1129–1142. 10.1029/2000WR900334
Reference: [13] J. A.  Hoopes, D. R. F.  Harleman: Dispersion in radial flow from a recharge well.J. Geophys. Res. 72 (1967), 3595–3607.
Reference: [14] J. A.  Hoopes, D. R. F.  Harleman: Wastewater recharge and dispersion in porous media.J.  Hydraul. Div. Am. Soc. Civ. Eng. 93 (1967), 51–71.
Reference: [15] K. H. Karlsen, K.-A.  Lie,: An unconditionally stable splitting for a class of nonlinear parabolic equations.IMA J.  Numer. Anal. 19 (1999), 609–635. MR 1719110, 10.1093/imanum/19.4.609
Reference: [16] A.  Mercado: The spreading problem of injected water in a permeability stratified aquifer.Int. Assoc. Sci. Hydrology Publ. 72 (1967), 23–36.
Reference: [17] A.  Mercado, E. Halevy: Determining the average porosity and permeability of a stratified aquifer with the aid of radio-active tracers.Water Resour. Res. 2 (1966), 525–532. 10.1029/WR002i003p00525
Reference: [18] A.  Mercado: Nitrate and chloride pollution of aquifers—a regional study with the aid of a single cell model.Water Resour. Res. 12 (1976), 731–747. 10.1029/WR012i004p00731
Reference: [19] S. V.  Patankar: Numerical Heat Transfer and Fluid Flow.Taylor & Francis, Washington D. C., 1980. Zbl 0521.76003
Reference: [20] J. F.  Pickens, G. E. Grisak: Scale-dependent dispersion in a stratified granular aquifer.Water Resour. Res. 17 (1981), 1191–1211. 10.1029/WR017i004p01191
Reference: [21] M. H.  Schroth, J. D.  Istok, and R.  Haggerty: In situ evaluation of solute retardation using single-well push-pull tests.Adv. Water Resour. 24 (2001), 105–117. 10.1016/S0309-1708(00)00023-3
Reference: [22] M. R.  Spiegel: Mathematical Handbook of Formulas and Tables.McGraw Hill, New York, 1968.
Reference: [23] Ne-Zheng Sun: Mathematical Model of Groundwater Pollution.Springer Verlag, New York, 1996. MR 1369246
Reference: [24] C. Welly, L. W.  Gelhar: Evaluation of longitudinal dispersivity from nonuniform flow tracer tests.Journ. Hydrology 153 (1971), 71–102.
.

Files

Files Size Format View
AplMat_48-2003-6_11.pdf 386.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo