Title:
|
Bounds and numerical results for homogenized degenerated $p$-Poisson equations (English) |
Author:
|
Byström, Johan |
Author:
|
Engström, Jonas |
Author:
|
Wall, Peter |
Language:
|
English |
Journal:
|
Applications of Mathematics |
ISSN:
|
0862-7940 (print) |
ISSN:
|
1572-9109 (online) |
Volume:
|
49 |
Issue:
|
2 |
Year:
|
2004 |
Pages:
|
111-122 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper we derive upper and lower bounds on the homogenized energy density functional corresponding to degenerated $p$-Poisson equations. Moreover, we give some non-trivial examples where the bounds are tight and thus can be used as good approximations of the homogenized properties. We even present some cases where the bounds coincide and also compare them with some numerical results. (English) |
Keyword:
|
homogenization |
Keyword:
|
bounds |
Keyword:
|
degenerated |
Keyword:
|
$p$-Poisson equation |
MSC:
|
35B27 |
MSC:
|
35J60 |
MSC:
|
74Q05 |
MSC:
|
74Q20 |
idZBL:
|
Zbl 1099.35008 |
idMR:
|
MR2043077 |
DOI:
|
10.1023/B:APOM.0000027219.35966.10 |
. |
Date available:
|
2009-09-22T18:17:12Z |
Last updated:
|
2020-07-02 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/134562 |
. |
Reference:
|
[1] A. Braides, D. Lukkassen: Reiterated homogenization of integral functionals.Math. Models Methods Appl. Sci. 10 (2000), 47–71. MR 1749689, 10.1142/S0218202500000057 |
Reference:
|
[2] J. Byström, J. Engström, and P. Wall: Reiterated homogenization of degenerated nonlinear elliptic equations.Chinese Ann. Math. Ser. B 23 (2002), 325–334. MR 1930186, 10.1142/S0252959902000304 |
Reference:
|
[3] J. Byström, J. Helsing, and A. Meidell: Some computational aspects of iterated structures.Compos-B: Engineering 32 (2001), 485–490. 10.1016/S1359-8368(01)00033-6 |
Reference:
|
[4] P. Ponte Castaneda: Bounds and estimates for the properties of nonlinear heterogeneous systems.Philos. Trans. Roy. Soc. London Ser. A 340 (1992), 531–567. Zbl 0776.73062, MR 1192288, 10.1098/rsta.1992.0079 |
Reference:
|
[5] P. Ponte Castaneda: A new variational principle and its application to nonlinear heterogeneous systems.SIAM J. Appl. Math. 52 (1992), 1321–1341. Zbl 0759.73064, MR 1182126, 10.1137/0152076 |
Reference:
|
[6] R. De Arcangelis, F. Serra Cassano: On the homogenization of degenerate elliptic equations in divergence form.J. Math. Pures Appl. 71 (1992), 119–138. MR 1170248 |
Reference:
|
[7] J.-L. Lions, D. Lukkassen, L.-E. Persson, and P. Wall: Reiterated homogenization of monotone operators.C. R. Acad. Sci. Paris Ser. I Math. 330 (2000), 675–680. MR 1763909, 10.1016/S0764-4442(00)00242-1 |
Reference:
|
[8] J.-L. Lions, D. Lukkassen, L.-E. Persson, and P. Wall: Reiterated homogenization of nonlinear monotone operators.Chinese Ann. Math. Ser. B 22 (2001), 1–12. MR 1823125, 10.1142/S0252959901000024 |
Reference:
|
[9] D. Lukkassen: On some sharp bounds for the off-diagonal elements of the homogenized tensor.Appl. Math. 40 (1995), 401–406. Zbl 0847.35011, MR 1342369 |
Reference:
|
[10] D. Lukkassen, L.-E. Persson, and P. Wall: On some sharp bounds for the homogenized $p$-Poisson equation.Appl. Anal. 58 (1995), 123–135. MR 1384593, 10.1080/00036819508840366 |
Reference:
|
[11] D. Lukkassen: Formulae and bounds connected to optimal design and homogenization of partial differential operators and integral functionals.Ph.D. thesis, Dept. of Math., Tromsö University, Norway, 1996. |
Reference:
|
[12] D. Lukkassen: Bounds and homogenization of integral functionals.Acta Sci. Math. 64 (1998), 121–141. Zbl 0928.35014, MR 1631973 |
Reference:
|
[13] P. Marcellini: Periodic solutions and homogenization of nonlinear variational problems.Ann. Mat. Pura Appl. 117 (1978), 139–152. MR 0515958, 10.1007/BF02417888 |
Reference:
|
[14] P. Wall: Homogenization of some partial differential operators and integral functionals.Ph.D. thesis, Dept. of Math., Luleå University of Technology, Sweden, 1998. |
Reference:
|
[15] P. Wall: Bounds and estimates on the effective properties for nonlinear composites.Appl. Math. 45 (2000), 419–437. Zbl 0996.74062, MR 1800963, 10.1023/A:1022381416707 |
Reference:
|
[16] P. Wall: Optimal bounds on the effective shear moduli for some nonlinear and reiterated problems.Acta Sci. Math. 65 (2000), 553–566. MR 1737271 |
. |