Previous |  Up |  Next

Article

Title: A sequence of mappings associated with the Hermite-Hadamard inequalities and applications (English)
Author: Dragomir, Sever S.
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 49
Issue: 2
Year: 2004
Pages: 123-140
Summary lang: English
.
Category: math
.
Summary: New properties for some sequences of functions defined by multiple integrals associated with the Hermite-Hadamard integral inequality for convex functions and some applications are given. (English)
Keyword: Hermite-Hadamard inequality
MSC: 26D10
MSC: 26D15
MSC: 26D99
idZBL: Zbl 1099.26016
idMR: MR2043078
DOI: 10.1023/B:APOM.0000027220.51557.6d
.
Date available: 2009-09-22T18:17:18Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134563
.
Reference: [1] G.  Allasia, C.  Giordano, J.  Pečarić: Hadamard-type inequalities for $(2r)$-convex functions with applications.Atti Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur. 133 (1999), 187–200. MR 1799453
Reference: [2] H.  Alzer: A note on Hadamard’s inequalities.C. R. Math. Rep. Acad. Sci. Canada 11 (1989), 255–258. Zbl 0707.26012, MR 1030364
Reference: [3] H.  Alzer: On an integral inequality.Anal. Numér. Théor. Approx. 18 (1989), 101–103. Zbl 0721.26011, MR 1089226
Reference: [4] A. G.  Azpeitia: Convex functions and the Hadamard inequality.Rev. Colombiana Mat. 28 (1994), 7–12. Zbl 0832.26015, MR 1304041
Reference: [5] D.  Barbu, S. S.  Dragomir and C.  Buşe: A probabilistic argument for the convergence of some sequences associated to Hadamard’s inequality.Studia Univ. Babeş-Bolyai Math. 38 (1993), 29–33. MR 1863680
Reference: [6] C.  Buşe, S. S.  Dragomir and D.  Barbu: The convergence of some sequences connected to Hadamard’s inequality.Demostratio Math. 29 (1996), 53–59. MR 1398727, 10.1515/dema-1996-0109
Reference: [7] S. S.  Dragomir: A mapping in connection to Hadamard’s inequalities.Anz. Österreich. Akad. Wiss. Math.-Natur. Kl. 128 (1991), 17–20. Zbl 0747.26015, MR 1188722
Reference: [8] S. S.  Dragomir: A refinement of Hadamard’s inequality for isotonic linear functionals.Tamkang J.  Math. 24 (1993), 101–106. Zbl 0799.26016, MR 1215250
Reference: [9] S. S.  Dragomir: On Hadamard’s inequalities for convex functions.Mat. Balkanica (N. S.) 6 (1992), 215–222. Zbl 0834.26010, MR 1183627
Reference: [10] S. S.  Dragomir: On Hadamard’s inequality for the convex mappings defined on a ball in the space and applications.Math. Inequal. Appl. 3 (2000), 177–187. Zbl 0951.26010, MR 1749295
Reference: [11] S. S.  Dragomir: On Hadamard’s inequality on a disk.JIPAM. J.  Inequal. Pure Appl. Math. 1 (2000), http://jipam.vu.edu.au/, Electronic. Zbl 0948.26012, MR 1756653
Reference: [12] S. S.  Dragomir: Some integral inequalities for differentiable convex functions.Makedon. Akad. Nauk Umet. Oddel. Mat.-Tehn. Nauk. Prilozi 13 (1992), 13–17. Zbl 0770.26009, MR 1262519
Reference: [13] S. S.  Dragomir: Some remarks on Hadamard’s inequalities for convex functions.Extracta Math. 9 (1994), 88–94. Zbl 0984.26012, MR 1325288
Reference: [14] S. S.  Dragomir: Two mappings in connection to Hadamard’s inequalities.J.  Math. Anal. Appl. 167 (1992), 49–56. Zbl 0758.26014, MR 1165255, 10.1016/0022-247X(92)90233-4
Reference: [15] S. S.  Dragomir, R. P.  Agarwal: Two new mappings associated with Hadamard’s inequalities for convex functions.Appl. Math. Lett. 11 (1998), 33–38. MR 1628995, 10.1016/S0893-9659(98)00030-5
Reference: [16] S. S.  Dragomir, C.  Buşe: Refinements of Hadamard’s inequality for multiple integrals.Utilitas Math. 47 (1995), 193–198. MR 1330902
Reference: [17] S. S.  Dragomir, Y. J.  Cho and S. S.  Kim: Inequalities of Hadamard’s type for Lipschitzian mappings and their applications.J.  Math. Anal. Appl. 245 (2000), 489–501. MR 1758551, 10.1006/jmaa.2000.6769
Reference: [18] S. S.  Dragomir, S.  Fitzpatrick: Hadamard inequality for $s$-convex functions in the first sense and applications.Demonstratio Math. 31 (1998), 633–642. MR 1658478
Reference: [19] S. S.  Dragomir, S.  Fitzpatrick: The Hadamard’s inequality for $s$-convex functions in the second sense.Demonstratio Math. 32 (1999), 687–696. MR 1740330
Reference: [20] S. S. Dragomir, N. M.  Ionescu: On some inequalities for convex-dominated functions.Anal. Numér. Théor. Approx. 19 (1990), 21–27. MR 1159773
Reference: [21] S. S.  Dragomir, D. S.  Milośević and J.  Sándor: On some refinements of Hadamard’s inequalities and applications.Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. 4 (1993), 3–10.
Reference: [22] S. S.  Dragomir, B.  Mond: On Hadamard’s inequality for a class of functions of Godunova and Levin.Indian J.  Math. 39 (1997), 1–9. MR 1476079
Reference: [23] S. S.  Dragomir, C. E. M.  Pearce: Quasi-convex functions and Hadamard’s inequality.Bull. Austral. Math. Soc. 57 (1998), 377–385. MR 1623227, 10.1017/S0004972700031786
Reference: [24] S. S.  Dragomir, C. E. M. Pearce, and J. E.  Pečarić: On Jessen’s related inequalities for isotonic sublinear functionals.Acta Sci. Math. 61 (1995), 373–382. MR 1377372
Reference: [25] S. S. Dragomir, J. E. Pečarić, and L. E. Persson: Some inequalities of Hadamard type.Soochow J.  Math. 21 (1995), 335–341. MR 1348130
Reference: [26] S. S. Dragomir, J. E.  Pečarić, and J.  Sándor: A note on the Jensen-Hadamard inequality.Anal. Numér. Théor. Approx. 19 (1990), 29–34. MR 1159774
Reference: [27] S. S.  Dragomir, G. H.  Toader: Some inequalities for $m$-convex functions.Studia Univ. Babeş-Bolyai Math. 38 (1993), 21–28. MR 1863679
Reference: [28] A. M.  Fink: A best possible Hadamard inequality.Math. Inequal. Appl. 1 (1998), 223–230. Zbl 0907.26009, MR 1613456
Reference: [29] A. M.  Fink: Toward a theory of best possible inequalities.Nieuw Arch. Wisk. 12 (1994), 19–29. Zbl 0827.26018, MR 1284677
Reference: [30] A. M.  Fink: Two inequalities.Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. 6 (1995), 48–49. Zbl 0841.26009, MR 1367482
Reference: [31] B.  Gavrea: On Hadamard’s inequality for the convex mappings defined on a convex domain in the space.JIPAM. J. Inequal. Pure Appl. Math. 1 (2000), Article 9, http://jipam.vu.edu.au/, Electronic. Zbl 0949.26008, MR 1756660
Reference: [32] P. M.  Gill, C. E. M.  Pearce and J.  Pečarić: Hadamard’s inequality for $r$-convex functions.J.  Math. Anal. Appl. 215 (1997), 461–470. MR 1490762, 10.1006/jmaa.1997.5645
Reference: [33] G. H.  Hardy, J. E.  Littlewood, and G.  Pólya: Inequalities. 2nd ed.Cambridge University Press, 1952. MR 0046395
Reference: [34] K.-C.  Lee, K.-L.  Tseng: On weighted generalization of Hadamard’s inequality for $g$ functions.Tamsui Oxf. J. Math. Sci. 16 (2000), 91–104. MR 1772077
Reference: [35] A.  Lupaş: The Jensen-Hadamard inequality for convex functions of higher order.Octogon Math. Mag. 5 (1997), 8–9. MR 1619472
Reference: [36] A.  Lupaş: A generalization of Hadamard’s inequality for convex functions.Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. 544–576 (1976), 115–121. MR 0444865
Reference: [37] D.  M.  Maksimović: A short proof of generalized Hadamard’s inequalities.Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. 634–677 (1979), 126–128. MR 0579274
Reference: [38] D. S.  Mitrinović, I.  Lacković: Hermite and convexity.Aequationes Math. 28 (1985), 229–232. MR 0791622, 10.1007/BF02189414
Reference: [39] D. S.  Mitrinović, J. E.  Pečarić, and A. M.  Fink: Classical and New Inequalities in Analysis.Kluwer Academic Publishers, Dordrecht, 1993. MR 1220224
Reference: [40] E.  Neuman: Inequalities involving generalized symmetric means.J.  Math. Anal. Appl. 120 (1986), 315–320. Zbl 0601.26013, MR 0861922, 10.1016/0022-247X(86)90218-0
Reference: [41] E.  Neuman, J. E.  Pečarić: Inequalities involving multivariate convex functions.J.  Math. Anal. Appl. 137 (1989), 514–549. MR 0984976, 10.1016/0022-247X(89)90262-X
Reference: [42] E.  Neuman: Inequalities involving multivariate convex functions. II.Proc. Amer. Math. Soc. 109 (1990), 965–974. Zbl 0699.26009, MR 1009996
Reference: [43] C. P.  Niculescu: A note on the dual Hermite-Hadamard inequality.The Math. Gazette (July 2000), .
Reference: [44] C. P.  Niculescu: Convexity according to the geometric mean.Math. Inequal. Appl. 3 (2000), 155–167. Zbl 0952.26006, MR 1749293
Reference: [45] C. E. M.  Pearce, J.  Pečarić, and V.  Šimić: Stolarsky means and Hadamard’s inequality.J. Math. Anal. Appl. 220 (1998), 99–109. MR 1612079, 10.1006/jmaa.1997.5822
Reference: [46] C. E. M.  Pearce, A. M.  Rubinov: $P$-functions, quasi-convex functions and Hadamard-type inequalities.J. Math. Anal. Appl. 240 (1999), 92–104. MR 1728202, 10.1006/jmaa.1999.6593
Reference: [47] J. E.  Pečarić: Remarks on two interpolations of Hadamard’s inequalities.Makedon. Akad. Nauk. Umet. Oddel. Mat.-Tehn. Nauk. Prilozi 13 (1992), 9–12. MR 1262518
Reference: [48] J.  Pečarić, S. S.  Dragomir: A generalization of Hadamard’s inequality for isotonic linear functionals.Rad. Mat. 7 (1991), 103–107. MR 1126888
Reference: [49] J.  Pečarić, F.  Proschan, and Y. L. Tong: Convex Functions, Partial Orderings and Statistical Applications.Academic Press, Boston, 1992. MR 1162312
Reference: [50] J.  Sándor: An application of the Jensen-Hadamard inequality.Nieuw Arch. Wisk. 8 (1990), 63–66. MR 1056662
Reference: [51] J.  Sándor: On the Jensen-Hadamard inequality.Studia Univ. Babeş-Bolyai, Math. 36 (1991), 9–15. MR 1280888
Reference: [52] P. M.  Vasić, I. B.  Lacković, and D. M.  Maksimović: Note on convex functions. IV. On Hadamard’s inequality for weighted arithmetic means.Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. 678–715 (1980), 199–205.
Reference: [53] G. S Yang, M. C.  Hong: A note on Hadamard’s inequality.Tamkang J.  Math. 28 (1997), 33–37. MR 1457248
Reference: [54] G. S. Yang, K. L.  Tseng: On certain integral inequalities related to Hermite-Hadamard inequalities.J.  Math. Anal. Appl. 239 (1999), 180–187. MR 1719056, 10.1006/jmaa.1999.6506
.

Files

Files Size Format View
AplMat_49-2004-2_4.pdf 2.204Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo