Previous |  Up |  Next

Article

Title: On Brown's method with convexity hypotheses (English)
Author: Milaszewicz, Juan Pedro
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 49
Issue: 2
Year: 2004
Pages: 165-184
Summary lang: English
.
Category: math
.
Summary: Given two initial points generating monotone convergent Brown iterations in the context of the monotone Newton theorem (MNT), it is proved that if one of them is an upper bound of the other, then the same holds for each pair of respective terms in the Brown sequences they generate. This comparison result is carried over to the corresponding Brown-Fourier iterations. An illustration is discussed. (English)
Keyword: nonlinear systems
Keyword: convex functions
Keyword: Brown’s method
Keyword: monotone convergence
Keyword: Fourier iterates
MSC: 65H10
idZBL: Zbl 1099.65045
idMR: MR2043080
DOI: 10.1023/B:APOM.0000027222.62203.3c
.
Date available: 2009-09-22T18:17:33Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134565
.
Reference: [1] R.  Brent: Some efficient algorithms for solving systems of nonlinear equations.SIAM J. Numer. Anal. 10 (1973), 327–344. Zbl 0258.65051, MR 0331764, 10.1137/0710031
Reference: [2] K.  Brown: A quadratically convergent Newton-like method based upon Gaussian elimination.SIAM J. Numer. Anal. 6 (1969), 560–569. Zbl 0245.65023, MR 0263229, 10.1137/0706051
Reference: [3] A.  Frommer: Monotonicity of Brown’s method.Z.  Angew. Math. Mech. 68 (1988), 101–109. Zbl 0663.65047, MR 0931771, 10.1002/zamm.19880680211
Reference: [4] A.  Frommer: Comparison of Brown’s and Newton’s method in the monotone case.Numer. Math. 52 (1988), 511–521. Zbl 0628.65039, MR 0945097, 10.1007/BF01400889
Reference: [5] J. P.  Milaszewicz, S.  Abdel Masih: Elimination and fixed point iterations.Comput. Math. Appl. 25 (1993), 43–53. MR 1199911, 10.1016/0898-1221(93)90197-4
Reference: [6] J. P. Milaszewicz: Comparison theorems for monotone Newton-Fourier iterations and applications in functional elimination.Linear Algebra Appl. 220 (1995), 343–357 343–357. Zbl 0844.65050, MR 1334584
Reference: [7] J. P.  Milaszewicz: Comparison theorems for a third order method.Appl. Math. Lett. 10 (1997), 17–21. Zbl 0883.65046, MR 1429469, 10.1016/S0893-9659(96)00104-8
Reference: [8] J. P.  Milaszewicz: On Brown’s and Newton’s methods with convexity hypotheses.J.  Comput. Appl. Math. 150 (2002), 1–24. MR 1946879, 10.1016/S0377-0427(02)00489-2
Reference: [9] J. M.  Ortega, W. C.  Rheinboldt: Iterative Solution of Nonlinear Equations in Several Variables.Academic Press, New York-London, 1970. MR 0273810
Reference: [10] A. M.  Ostrowski: Solution of Equations and Systems of Equations.Academic Press, New York-London, 1960. MR 0216746
Reference: [11] H.  Schwetlick: Numerische Lösung Nichtlinearer Gleichungssysteme.R.  Oldenburg Verlag, München, 1979.
Reference: [12] R. S.  Varga: Matrix Iterative Analysis.Prentice-Hall, Englewood Cliffs, 1962. MR 0158502
.

Files

Files Size Format View
AplMat_49-2004-2_6.pdf 2.241Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo