Previous |  Up |  Next

Article

Title: Non-uniqueness of almost unidirectional inviscid compressible flow (English)
Author: Šolín, Pavel
Author: Segeth, Karel
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 49
Issue: 3
Year: 2004
Pages: 247-268
Summary lang: English
.
Category: math
.
Summary: Our aim is to find roots of the non-unique behavior of gases which can be observed in certain axisymmetric nozzle geometries under special flow regimes. For this purpose, we use several versions of the compressible Euler equations. We show that the main reason for the non-uniqueness is hidden in the energy decomposition into its internal and kinetic parts, and their complementary behavior. It turns out that, at least for inviscid compressible flows, a bifurcation can occur only at flow regimes with the Mach number equal to one (sonic states). Analytical quasi-one-dimensional results are supplemented by quasi-one-dimensional and axisymmetric three-dimensional finite volume computations. Good agreement between quasi-one-dimensional and axisymmetric results, including the presence of multiple stationary solutions, is presented for axisymmetric nozzles with reasonably small slopes of the radius. (English)
Keyword: non-uniqueness
Keyword: inviscid gas flow
Keyword: compressible Euler equations
Keyword: quasi-one-dimensional
Keyword: axisymmetric
Keyword: finite volume method
MSC: 35L65
MSC: 65H10
MSC: 76H05
MSC: 76M25
MSC: 76N10
MSC: 76N15
idZBL: Zbl 1099.76053
idMR: MR2059429
DOI: 10.1023/B:APOM.0000042365.99783.b3
.
Date available: 2009-09-22T18:18:01Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134568
.
Reference: [1] M.  Feistauer: Mathematical Methods in Fluid Dynamics.Longman Scientific & Technical, Harlow, 1993. Zbl 0819.76001
Reference: [2] J.  Felcman, P.  Šolín: On the construction of the Osher-Solomon scheme for 3D  Euler equations.East-West J.  Numer. Math. 6 (1998), 43–64. MR 1629850
Reference: [3] C. Hirsch: Numerical Computation of Internal and External Flows, Vol.  2.J.  Wiley & Sons, Chichester, 1990.
Reference: [4] D. D.  Knight: Inviscid Compressible Flow. The Handbook of Fluid Dynamics.CRC, 1998.
Reference: [5] L. D.  Landau, E. M.  Lifschitz: Fluid Mechanics.Pergamon Press, London, 1959.
Reference: [6] H. Ockendon, A. B.  Tayler: Inviscid Fluid Flow.Springer-Verlag, New York-Heidelberg-Berlin, 1983. MR 0693294
Reference: [7] H.  Ockendon, J. R.  Ockendon: The Fanno Model for Turbulent Compressible Flow. Preprint, OCIAM.Mathematical Institute, Oxford University, Oxford, 2001. MR 1875697
Reference: [8] S.  Osher, F. Solomon: Upwind difference schemes for hyperbolic systems of conservation laws.Math. Comp. 38 (1982), 339–374. MR 0645656, 10.1090/S0025-5718-1982-0645656-0
Reference: [9] A.  H.  Shapiro: The Dynamics and Thermodynamics of Compressible Fluid Flow, Vol. 1.The Ronald Press Co., New York, 1953.
Reference: [10] J. L.  Steger, R. F.  Warming: Flux vector splitting of the inviscid gasdynamics equations with applications to finite-difference methods.J. Comput. Phys. 40 (1981), 263–293. MR 0617098
Reference: [11] A.  Terenzi, N.  Mancini, F.  Podenzani: Transient Compressible Flow in Pipelines: a Godunov-type Solver for Navier-Stokes Equations.Preprint, 2000.
Reference: [12] E.  Truckenbrodt: Fluidmechanik, Band  2.Springer-Verlag, Berlin-Heidelberg-New York, 1980. Zbl 0445.76001
Reference: [13] G. Vijayasundaram: Transonic flow simulation using upstream centered scheme of Godunov type in finite elements.J.  Comput. Phys. 63 (1986), 416–433. MR 0835825, 10.1016/0021-9991(86)90202-0
Reference: [14] A. J.  Ward-Smith: Internal Fluid Flow, The Fluid Dynamics of Flow in Pipes and Ducts.Clarendon Press, Oxford, 1980.
Reference: [15] P.  Wesseling: Principles of Computational Fluid Dynamics.Springer-Verlag, Berlin, 2000. Zbl 0960.76002, MR 1796357
.

Files

Files Size Format View
AplMat_49-2004-3_4.pdf 2.900Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo