Previous |  Up |  Next

Article

Title: Approximation of periodic solutions of a system of periodic linear nonhomogeneous differential equations (English)
Author: Fischer, Alexandr
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 49
Issue: 3
Year: 2004
Pages: 269-284
Summary lang: English
.
Category: math
.
Summary: The present paper does not introduce a new approximation but it modifies a certain known method. This method for obtaining a periodic approximation of a periodic solution of a linear nonhomogeneous differential equation with periodic coefficients and periodic right-hand side is used in technical practice. However, the conditions ensuring the existence of a periodic solution may be violated and therefore the purpose of this paper is to modify the method in order that these conditions remain valid. (English)
Keyword: oscillation problem
Keyword: periodic differential equation
Keyword: periodic solution
Keyword: $\omega $-periodic solution
Keyword: trigonometric polynomial
Keyword: trigonometric approximation
Keyword: Gram’s determinant
MSC: 34A45
MSC: 34C25
MSC: 42A10
idZBL: Zbl 1099.34041
idMR: MR2059430
DOI: 10.1023/B:APOM.0000042366.62321.55
.
Date available: 2009-09-22T18:18:07Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134569
.
Reference: [1] N. K. Bobylev, J. K. Kim, S. K. Korovin et al.: Semidiscrete approximation of semilinear periodic problems in Banach spaces.Nonlinear Anal. 33 (1998), 473–482. MR 1635712, 10.1016/S0362-546X(97)00560-9
Reference: [2] B. M.  Budak, S. V. Fomin: Multiple Integrals and Series.Nauka, Moskva, 1971. (Russian) MR 0349912
Reference: [3] E. A. Coddington, N. Levinson: Theory of Ordinary Differential Equations.McGraw-Hill, New York-Toronto-London, 1955. MR 0069338
Reference: [4] P.  Hartman: Ordinary Differential Equations.John Wiley & Sons, New York-London-Sydney, 1964. Zbl 0125.32102, MR 0171038
Reference: [5] V. N. Laptinskij: Fourier approximations of periodic solutions of nonlinear differential equations.Differ. Equ. 21 (1985), 1275–1280. Zbl 0617.34032, MR 0818569
Reference: [6] L. A.  Liusternik, V. J. Sobolev: Elements of Functional Analysis.Nauka, Moskva, 1965. (Russian) MR 0209802
Reference: [7] I. G.  Main: Vibrations and Waves in Physics.Cambridge University Press, 1978, 1984, pp. 89–97.
Reference: [8] S. Timoshenko, D. H. Young: Advanced Dynamics.Mc Graw-Hill, New York-Toronto-London, 1948. MR 0028707
Reference: [9] L. Q.  Zhang: Spline collocation approximation to periodic solutions of ordinary differential equations.J. Comput. Math. 10 (1992), 147–154. Zbl 0776.65051, MR 1159628
Reference: [10] L. Q.  Zhang: Two-sided approximation to periodic solutions of ordinary differential equations.Numer. Math. 66 (1993), 399–409. Zbl 0799.65077, MR 1246964, 10.1007/BF01385704
.

Files

Files Size Format View
AplMat_49-2004-3_5.pdf 1.886Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo