Previous |  Up |  Next

Article

Title: Finite element analysis of free material optimization problem (English)
Author: Mach, Jan
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 49
Issue: 4
Year: 2004
Pages: 285-307
Summary lang: English
.
Category: math
.
Summary: Free material optimization solves an important problem of structural engineering, i.e. to find the stiffest structure for given loads and boundary conditions. Its mathematical formulation leads to a saddle-point problem. It can be solved numerically by the finite element method. The convergence of the finite element method can be proved if the spaces involved satisfy suitable approximation assumptions. An example of a finite-element discretization is included. (English)
Keyword: structural optimization
Keyword: material optimization
Keyword: topology optimization
Keyword: finite elements
MSC: 65N30
MSC: 74G15
MSC: 74P05
MSC: 74S05
idZBL: Zbl 1099.65112
idMR: MR2076487
DOI: 10.1007/s10492-004-6401-2
.
Date available: 2009-09-22T18:18:16Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134570
.
Reference: [1] G.  Allaire, S.  Aubry, and F.  Jouve: Eigenfrequency optimization in optimal design.Comput. Methods Appl. Mech. Engrg. 190 (2001), 3565–3579. MR 1819157, 10.1016/S0045-7825(00)00284-X
Reference: [2] A.  Ben-Tal, M.  Kočvara, A.  Nemirovski, and J.  Zowe: Free material optimization via semidefinite programming: the multi-load case with contact conditions.SIAM J.  Optim. 9 (1999), 813–832. MR 1724765, 10.1137/S1052623497327994
Reference: [3] M. P.  Bendsøe: Optimization of Structural Topology, Shape and Material.Springer-Verlag, Heidelberg-Berlin, 1995. MR 1350791
Reference: [4] M. P. Bendsøe, A. Díaz: Optimization of material properties for Mindlin plate design.Structural Optimization 6 (1993), 268–270. 10.1007/BF01743387
Reference: [5] M. P. Bendsøe, A.  Díaz, R.  Lipton, and J. E.  Taylor: Optimal design of material properties and material distribution for multiple loading conditions.Internat. J.  Numer. Methods Engrg. 38 (1995), 1149–1170. MR 1325337, 10.1002/nme.1620380705
Reference: [6] M. P. Bendsøe, J. M.  Guades, R. B.  Haber, P.  Pedersen and J. E.  Taylor: An analytical model to predict optimal material properties in the context of optimal structural design.J.  Appl. Mech. 61 (1994), 930–937. MR 1327483, 10.1115/1.2901581
Reference: [7] M. P. Bendsøe, J. M.  Guades, S.  Plaxton, and J. E.  Taylor: Optimization of structures and material properties for solids composed of softening material.Int. J.  Solids Struct. 33 (1995), 1179–1813.
Reference: [8] M. Brdička: Mechanics of Continuum.NČSAV, Praha, 1959. (Czech)
Reference: [9] J.  Cea: Lectures on Optimization.Springer-Verlag, Berlin-Heidelberg-New York, 1978. Zbl 0409.90050
Reference: [10] P. G.  Ciarlet: The Finite Element Method for Elliptic Problems.North-Holland, Amsterdam-New York-Oxford, 1978. Zbl 0383.65058, MR 0520174
Reference: [11] I.  Ekeland, R.  Temam: Convex Analysis and Variational Problems.North-Holland, Amsterdam-Oxford, 1976. MR 0463994
Reference: [12] L. C.  Evans, R. F.  Garpiery: Measure Theory and Fine Properties of Functions.CRC  Press, London, 1992. MR 1158660
Reference: [13] J.  Haslinger: Finite element analysis for unilateral problems with obstacles on the boundary.Apl. Mat. 22 (1977), 180–188. Zbl 0434.65083, MR 0440956
Reference: [14] J.  Haslinger, P.  Neittaanmäki: Finite Element Approximation for Optimal Shape, Material, and Topology Design.John Wiley & Sons, Chichester, 1996. MR 1419500
Reference: [15] M.  Kočvara, J.  Zowe: Free Material Optimization.Doc. Math. J.  DMV, Extra Volume ICM III (1998), 707–716. MR 1648200
Reference: [16] J.  Nečas: Les méthodes directes en théorie des équations elliptiques.Academia, Praha, 1967. MR 0227584
Reference: [17] J.  Nečas, I.  Hlaváček: Mathematical Theory of Elastic and Elasto-Plastic Bodies: An Introduction.Elsevier, Amsterdam-Oxford-New York, 1981. MR 0600655
Reference: [18] J.  Petersson, J.  Haslinger: An approximation theory for optimum sheet in unilateral contact.Quart. Appl. Math. 56 (1998), 309–325. MR 1622499, 10.1090/qam/1622499
Reference: [19] U.  Ringertz: On finding the optimal distribution of material properties.Structural Optimization 5 (1993), 265–267. 10.1007/BF01743590
Reference: [20] J.  Zowe, M. Kočvara, and M. P. Bendsøe: Free material optimization via mathematical programming.Math. Program. Series  B 79 (1997), 445–466. MR 1464778, 10.1007/BF02614328
.

Files

Files Size Format View
AplMat_49-2004-4_1.pdf 2.588Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo