Previous |  Up |  Next

Article

Title: Asymptotic behaviour for a phase-field model with hysteresis in one-dimensional thermo-visco-plasticity (English)
Author: Klein, Olaf
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 49
Issue: 4
Year: 2004
Pages: 309-341
Summary lang: English
.
Category: math
.
Summary: The asymptotic behaviour for $t \rightarrow \infty $ of the solutions to a one-dimensional model for thermo-visco-plastic behaviour is investigated in this paper. The model consists of a coupled system of nonlinear partial differential equations, representing the equation of motion, the balance of the internal energy, and a phase evolution equation, determining the evolution of a phase variable. The phase evolution equation can be used to deal with relaxation processes. Rate-independent hysteresis effects in the strain-stress law and also in the phase evolution equation are described by using the mathematical theory of hysteresis operators. (English)
Keyword: phase-field system
Keyword: phase transition
Keyword: hysteresis operator
Keyword: thermo-visco-plasticity
Keyword: asymptotic behaviour
MSC: 34C55
MSC: 35B40
MSC: 35K60
MSC: 47J40
MSC: 74K05
MSC: 74N30
idZBL: Zbl 1099.74051
idMR: MR2076488
DOI: 10.1007/s10492-004-6402-1
.
Date available: 2009-09-22T18:18:22Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134571
.
Reference: [1] G. Andrews: On the existence of solutions to the equation $u_{tt} = u_{xxt} + \sigma (u_x)_x$.J.  Differential Equations 35 (1980), 200–231. Zbl 0415.35018, MR 0561978, 10.1016/0022-0396(80)90040-6
Reference: [2] G. Bourbon, P. Vacher, C. Lexcellent: Comportement thermomécanique d’un alliage polycristallin à mémoire de forme Cu-Al-Ni.Phys. Stat. Sol.  (A) 125 (1991), 179–190. 10.1002/pssa.2211250115
Reference: [3] M. Brokate, J.  Sprekels: Hysteresis and Phase Transitions.Springer-Verlag, New York, 1996. MR 1411908
Reference: [4] : Shape Memory Materials and their Applications. Vol.  394–395 of Materials Science Forum.Y. Y. Chu, L. C. Zhao (eds.), Trans Tech Publications, Switzerland, 2002.
Reference: [5] C. M. Dafermos, L.  Hsiao: Global smooth thermomechanical processes in one-dimensional nonlinear thermoviscoelasticity.Nonlinear Anal. 6 (1982), 434–454. MR 0661710
Reference: [6] F. Falk: Model free energy, mechanics and thermodynamics of shape memory alloys.Acta Met. 28 (1980), 1773–1780. 10.1016/0001-6160(80)90030-9
Reference: [7] F. Falk: Ginzburg-Landau theory of static domain walls in shape-memory alloys.Z.  Physik  B—Condensed Matter 51 (1983), 177–185. 10.1007/BF01308772
Reference: [8] F. Falk: Pseudoelastic stress-strain curves of polycrystalline shape memory alloys calculated from single crystal data.Internat. J.  Engrg. Sci. 27 (1989), 277–284. 10.1016/0020-7225(89)90115-8
Reference: [9] M. Frémond: Non-Smooth Thermomechanics.Springer-Verlag, Berlin, 2002. Zbl 0990.80001, MR 1885252
Reference: [10] M. Frémond, S. Miyazaki: Shape Memory Alloys, CISM Courses and Lectures, Vol. 351.Springer-Verlag, , 1996.
Reference: [11] G. Gilardi, P.  Krejčí, J. Sprekels: Hysteresis in phase-field models with thermal memory.Math. Methods Appl. Sci. 23 (2000), 909–922. MR 1765906, 10.1002/1099-1476(20000710)23:10<909::AID-MMA142>3.0.CO;2-E
Reference: [12] T. Jurke, O. Klein: Existence results for a phase-field model in one-dimensional thermo-visco-plasticity involving unbounded hysteresis operators.In preparation.
Reference: [13] O. Klein, P. Krejčí: Outwards pointing hysteresis operators and and asymptotic behaviour of evolution equations.Nonlinear Anal. Real World Appl. 4 (2003), 755–785. MR 1978561
Reference: [14] M. Krasnosel’skii, A.  Pokrovskii: Systems with Hysteresis.Springer-Verlag, Heidelberg, 1989; Russian edition: Nauka, Moscow, 1983. MR 0742931
Reference: [15] P. Krejčí: Hysteresis, Convexity and Dissipation in Hyperbolic Equations.Gakuto Internat. Ser. Math. Sci. Appl. Vol.  8, Gakkōtosho, Tokyo, 1996. MR 2466538
Reference: [16] P. Krejčí, J. Sprekels: On a system of nonlinear PDEs with temperature-dependent hysteresis in one-dimensional thermoplasticity.J.  Math. Anal. Appl. 209 (1997), 25–46. MR 1444509, 10.1006/jmaa.1997.5304
Reference: [17] P. Krejčí, J.  Sprekels: Hysteresis operators in phase-field models of Penrose-Fife type.Appl. Math. 43 (1998), 207–222. MR 1620620, 10.1023/A:1023276524286
Reference: [18] P. Krejčí, J.  Sprekels: Temperature-dependent hysteresis in one-dimensional thermovisco-elastoplasticity.Appl. Math. 43 (1998), 173–205. MR 1620624, 10.1023/A:1023224507448
Reference: [19] P. Krejčí, J.  Sprekels: A hysteresis approach to phase-field models.Nonlinear Anal. Ser. A 39 (2000), 569–586. MR 1727271, 10.1016/S0362-546X(98)00222-3
Reference: [20] P. Krejčí, J.  Sprekels: Phase-field models with hysteresis.J.  Math. Anal. Appl. 252 (2000), 198–219. MR 1797852
Reference: [21] P. Krejčí, J.  Sprekels: Phase-field systems and vector hysteresis operators.In: Free Boundary Problems: Theory and Applications,  II (Chiba, 1999), Gakkōtosho, Tokyo, 2000, pp. 295–310. MR 1794360
Reference: [22] P. Krejčí, J.  Sprekels: On a class of multi-dimensional Prandtl-Ishlinskii operators.Physica  B 306 (2001), 185–190. 10.1016/S0921-4526(01)01001-8
Reference: [23] P. Krejčí, J.  Sprekels: Phase-field systems for multi-dimensional Prandtl-Ishlinskii operators with non-polyhedral characteristics.Math. Methods Appl. Sci. 25 (2002), 309–325. MR 1875705, 10.1002/mma.288
Reference: [24] P. Krejčí, J.  Sprekels, and U.  Stefanelli: One-dimensional thermo-visco-plastic processes with hysteresis and phase transitions.Adv. Math. Sci. Appl. 13 (2003), 695–712. MR 2029939
Reference: [25] P. Krejčí, J.  Sprekels, and U.  Stefanelli: Phase-field models with hysteresis in one-dimensional thermoviscoplasticity.SIAM J. Math. Anal. 34 (2002), 409–434. MR 1951781, 10.1137/S0036141001387604
Reference: [26] P. Krejčí, J.  Sprekels, and S.  Zheng: Existence and asymptotic behaviour in phase-field models with hysteresis.In: Lectures on Applied Mathematics (Munich, 1999), Springer, Berlin, 2000, pp. 77–88. MR 1767764
Reference: [27] P. Krejčí, J. Sprekels, and S. Zheng: Asymptotic behaviour for a phase-field system with hysteresis.J.  Differential Equations 175 (2001), 88–107. MR 1849225, 10.1006/jdeq.2001.3950
Reference: [28] P. Krejčí: Resonance in Preisach systems.Appl. Math. 45 (2000), 439–468. MR 1800964, 10.1023/A:1022333500777
Reference: [29] I. Müller: Grundzüge der Thermodynamik, 3. ed.Springer-Verlag, Berlin-New York, 2001.
Reference: [30] I. Müller, K. Wilmanski: A model for phase transition in pseudoelastic bodies.Il Nuovo Cimento 57B (1980), 283–318.
Reference: [31] : Space Memory Materials, first paperback.K. Otsuka, C. Wayman (eds.), Cambridge University Press, Cambridge, 1999.
Reference: [32] R. L. Pego: Phase transitions in onedimensional nonlinear viscoelasticity: Admissibility and stability.Arch. Ration. Mech. Anal. 97 (1987), 353–394. MR 0865845, 10.1007/BF00280411
Reference: [33] R. Racke, S.  Zheng: Global existence and asymptotic behavior in nonlinear thermoviscoelasticity.J.  Differential Equations 134 (1997), 46–67. MR 1429091, 10.1006/jdeq.1996.3216
Reference: [34] W. Shen, S. Zheng: On the coupled Cahn-Hilliard equations.Comm. Partial Differential Equations 18 (1993), 701–727. MR 1214877, 10.1080/03605309308820946
Reference: [35] J. Sprekels, S.  Zheng, P.  Zhu: Asymptotic behavior of the solutions to a Landau-Ginzburg system with viscosity for martensitic phase transitions in shape memory alloys.SIAM J. Math. Anal. 29 (1998), 69–84 (electronic). MR 1617175, 10.1137/S0036141096297698
Reference: [36] A. Visintin: Differential Models of Hysteresis.Springer-Verlag, Berlin, 1994. Zbl 0820.35004, MR 1329094
Reference: [37] A.  Visintin: Models of Phase Transitions. Progress in Nonlinear Differential Equations and Their Applications, Vol. 28.Birkhäuser-Verlag, Boston, 1996. MR 1423808
Reference: [38] K. Wilmanski: Symmetric model of stress-strain hysteresis loops in shape memory alloys.Internat J.  Engrg. Sci. 31 (1993), 1121–1138. Zbl 0774.73016, 10.1016/0020-7225(93)90086-A
Reference: [39] S. Zheng: Nonlinear Parabolic Equations and Hyperbolic—Parabolic Coupled Systems. Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 76.Longman, New York, 1995. MR 1375458
.

Files

Files Size Format View
AplMat_49-2004-4_2.pdf 3.999Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo