Title:
|
On some iterated means arising in homogenization theory (English) |
Author:
|
Lukkassen, Dag |
Author:
|
Peetre, Jaak |
Author:
|
Persson, Lars-Erik |
Language:
|
English |
Journal:
|
Applications of Mathematics |
ISSN:
|
0862-7940 (print) |
ISSN:
|
1572-9109 (online) |
Volume:
|
49 |
Issue:
|
4 |
Year:
|
2004 |
Pages:
|
343-356 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We consider iteration of arithmetic and power means and discuss methods for determining their limit. These means appear naturally in connection with some problems in homogenization theory. (English) |
Keyword:
|
iterations |
Keyword:
|
means |
Keyword:
|
homogenization theory |
MSC:
|
26A18 |
MSC:
|
26D99 |
MSC:
|
26E60 |
MSC:
|
35M20 |
idZBL:
|
Zbl 1099.26002 |
idMR:
|
MR2076489 |
DOI:
|
10.1007/s10492-004-6403-0 |
. |
Date available:
|
2009-09-22T18:18:29Z |
Last updated:
|
2020-07-02 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/134572 |
. |
Reference:
|
[1] J. Arazy, T. Claesson, S. Janson and J. Peetre: Means and their iterations.In: Proceedings of the Nineteenth Nordic Congress of Mathematics, Reykjavik, 1984, pp. 191–212. MR 0828035 |
Reference:
|
[2] M. Avellaneda: Iterated homogenization, differential effective medium theory and applications.Comm. Pure Appl. Math. 40 (1987), 527–554. Zbl 0629.73010, MR 0896766, 10.1002/cpa.3160400502 |
Reference:
|
[3] E. F. Beckenbach: Convexity properties of generalized mean value functions.Ann. Math. Statistics 13 (1942), 88–90. Zbl 0061.11601, MR 0006357, 10.1214/aoms/1177731646 |
Reference:
|
[4] A. Bensoussan, J. L. Lions, and G. C. Papanicolaou: Asymptotic Analysis for Periodic Structures.North Holland, Amsterdam-New York-Oxford, 1978. MR 0503330 |
Reference:
|
[5] J. Bergh, J. Löfström: Interpolations Spaces. An introduction (Grundlehren der mathematischen Wissenschaften 223).Springer-Verlag, Berlin-Heidelberg-New York, 1976. MR 0482275 |
Reference:
|
[6] W. E. Boyce, R. C. Diprima: Elementary Differential Equations and Boundary Value Problems.John Wiley & Sons, New York, 1986. MR 0179403 |
Reference:
|
[7] A. Braides, D. Lukkassen: Reiterated homogenization of integral functionals.Math. Models Methods Appl. Sci. 10 (2000), 47–71. MR 1749689, 10.1142/S0218202500000057 |
Reference:
|
[8] D. A. G. Bruggerman: Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen.Ann. Physik. 24 (1935), 634. |
Reference:
|
[9] P. S. Bullen, D. S. Mitrinović, and P. M. Vasić: Means and Their Inequalities.D. Reidel Publishing Company, Dordrecht, 1988. MR 0947142 |
Reference:
|
[10] G. H. Hardy, J. E. Littlewood, and G. Pólya: Inequalities.Cambridge University Press, Cambridge, 1934 (1978). |
Reference:
|
[11] Z. Hashin, S. Shtrikman: A variational approach to the theory of effective magnetic permeability of multiphase materials.J. Appl. Phys. 33 (1962), 3125–3131. |
Reference:
|
[12] J.-L. Lions, D. Lukkassen, L.-E. Persson, and P. Wall: Reiterated homogenization of monotone operators.C. R. Acad. Sci. Paris, Sér. I, Math. 330 (2000), 675–680. MR 1763909 |
Reference:
|
[13] J.-L. Lions, D. Lukkassen, L.-E. Persson, and P. Wall: Reiterated homogenization of nonlinear monotone operators.Chinese Ann. Math. Ser. B 22 (2001), 1–12. MR 1823125, 10.1142/S0252959901000024 |
Reference:
|
[14] D. Lukkassen: Formulæ and bounds connected to homogenization and optimal design of partial differential operators and integral functionals.PhD thesis (ISBN: 82-90487-87-8), University of Tromsø, 1996. |
Reference:
|
[15] D. Lukkassen: A new reiterated structure with optimal macroscopic behavior.SIAM J. Appl. Math. 59 (1999), 1825–1842. Zbl 0933.35023, MR 1710545, 10.1137/S0036139997320081 |
Reference:
|
[16] J. Peetre: Generalizing the arithmetic-geometric mean—a hapless computer experiment.Internat. J. Math. Math. Sci. 12 (1989), 235–245. Zbl 0707.26005, MR 0994905, 10.1155/S016117128900027X |
Reference:
|
[17] J. Peetre: Some observations on algorithms of the Gauss-Borchardt type.Proc. of the Edinburgh Math. Soc. (2) 34 (1991), 415–431. Zbl 0746.39006, MR 1131961 |
. |