Previous |  Up |  Next

Article

Title: Extensions from the Sobolev spaces $H^1$ satisfying prescribed Dirichlet boundary conditions (English)
Author: Ženíšek, Alexander
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 49
Issue: 5
Year: 2004
Pages: 405-413
Summary lang: English
.
Category: math
.
Summary: Extensions from $H^1(\Omega _P)$ into $H^1(\Omega )$ (where $\Omega _P\subset \Omega $) are constructed in such a way that extended functions satisfy prescribed boundary conditions on the boundary $\partial \Omega $ of $\Omega $. The corresponding extension operator is linear and bounded. (English)
Keyword: extensions satisfying prescribed boundary conditions
Keyword: Nikolskij extension theorem
MSC: 46E35
MSC: 46N40
MSC: 65N99
idZBL: Zbl 1099.65126
idMR: MR2086086
DOI: 10.1023/B:APOM.0000048120.75291.a5
.
Date available: 2009-09-22T18:19:02Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134576
.
Reference: [1] A. Kufner, O. John, and S. Fučík: Function Spaces.Academia, Prague, 1977. MR 0482102
Reference: [2] J. Nečas: Les Méthodes Directes en Théorie des Equations Elliptiques.Academia/Masson, Prague/Paris, 1967. MR 0227584
Reference: [3] J. Nečas, I.  Hlaváček: Mathematical Theory of Elastic and Elasto-Plastic Bodies: An Introduction.Elsevier, Amsterdam, 1981. MR 0600655
Reference: [4] A. Ženíšek: Finite element variational crimes in parabolic-elliptic problems. Part  I. Nonlinear schemes.Numer. Math. 55 (1989), 343–376. MR 0993476, 10.1007/BF01390058
Reference: [5] A. Ženíšek: Nonlinear Elliptic and Evolution Problems and their Finite Element Approximations.Academic Press, London, 1990. MR 1086876
Reference: [6] A. Ženíšek: On a generalization of Nikolskij’s extension theorem in the case of two variables.Appl. Math. 48 (2003), 367–404. Zbl 1099.46022, MR 2008890, 10.1023/B:APOM.0000024482.61562.2b
Reference: [7] M. Zlámal: Finite element solution of quasistationary nonlinear magnetic field.RAIRO Anal. Numér. 16 (1982), 161–191. MR 0661454, 10.1051/m2an/1982160201611
Reference: [8] M. Zlámal: A linear scheme for the numerical solution of nonlinear quasistationary magnetic fields.Math. Comput. 41 (1983), 425–440. MR 0717694, 10.1090/S0025-5718-1983-0717694-1
.

Files

Files Size Format View
AplMat_49-2004-5_2.pdf 1.108Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo