Previous |  Up |  Next

Article

Title: On evolution Galerkin methods for the Maxwell and the linearized Euler equations (English)
Author: Lukáčová-Medviďová, Mária
Author: Saibertová, Jitka
Author: Warnecke, Gerald
Author: Zahaykah, Yousef
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 49
Issue: 5
Year: 2004
Pages: 415-439
Summary lang: English
.
Category: math
.
Summary: The subject of the paper is the derivation and analysis of evolution Galerkin schemes for the two dimensional Maxwell and linearized Euler equations. The aim is to construct a method which takes into account better the infinitely many directions of propagation of waves. To do this the initial function is evolved using the characteristic cone and then projected onto a finite element space. We derive the divergence-free property and estimate the dispersion relation as well. We present some numerical experiments for both the Maxwell and the linearized Euler equations. (English)
Keyword: hyperbolic systems
Keyword: wave equation
Keyword: evolution Galerkin schemes
Keyword: Maxwell equations
Keyword: linearized Euler equations
Keyword: divergence-free
Keyword: vorticity
Keyword: dispersion
MSC: 35A35
MSC: 35Q35
MSC: 35Q60
MSC: 65M60
MSC: 76B99
MSC: 76M10
MSC: 78M10
idZBL: Zbl 1099.65088
idMR: MR2086087
DOI: 10.1023/B:APOM.0000048121.68355.2a
.
Date available: 2009-09-22T18:19:09Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134577
.
Reference: [1] C. A. Balanis: Advance Engineering Electromagnetics.John Wiley & Sons, New York-Chichester-Brisbane-Toronto-Singapore, 1989.
Reference: [2] D. K. Cheng: Field and Wave Electromagnetics.Addison-Wesley Publishing Company, second edition, 1989.
Reference: [3] J. D. Jackson: Classical Electrodynamics.John Wiley & Sons, third edition, New York, 1999. Zbl 0920.00012, MR 0436782
Reference: [4] M. Lukáčová-Medviďová, K. W. Morton, and G. Warnecke: Finite volume evolution, Galerkin metods for Euler equations of gas dynamics.Internat. J. Numer. Methods Fluids 40 (2002), 425–434. MR 1932992, 10.1002/fld.297
Reference: [5] M. Lukáčová-Medviďová, K. W. Morton, and G.  Warnecke: Evolution Galerkin methods for hyperbolic systems in two space dimensions.Math. Comp. 69 (2000), 1355–1348. MR 1709154, 10.1090/S0025-5718-00-01228-X
Reference: [6] M. Lukáčová-Medviďová, J. Saibertová, and G. Warnecke: Finite volume evolution Galerkin methods for nonlinear hyperbolic systems.J.  Comput. Phys. 183 (2002), 533–562. MR 1947781, 10.1006/jcph.2002.7207
Reference: [7] M. Lukáčová-Medviďová, G.  Warnecke, and Y. Zahaykah: On the boundary conditions for EG-methods applied to the two-dimensional wave equation system.Z. Angew. Math. Mech. 84 (2004), 237–251. MR 2045490, 10.1002/zamm.200310103
Reference: [8] M. Lukáčová-Medviďová, G. Warnecke, and Y. Zahaykah: Third order finite volume evolution Galerkin (FVEG) methods for two-dimensional wave equation system.J. Numer. Math. 11 (2003), 235–251. MR 2018817
Reference: [9] S. Ostkamp: Multidimensional characteristic Galerkin schemes and evolution operators for hyperbolic systems.Math. Methods Appl. Sci. 20 (1997), 1111–1125. MR 1465396, 10.1002/(SICI)1099-1476(19970910)20:13<1111::AID-MMA903>3.0.CO;2-1
Reference: [10] G. Strang: On the construction and comparison of difference schemes.SIAM J. Numer. Anal. 5 (1968), 506–517. MR 0235754, 10.1137/0705041
Reference: [11] Y. Zahaykah: Evolution Galerkin schemes and discrete boundary condition for multidimensional first order systems.PhD.  thesis, Magdeburg, 2002.
.

Files

Files Size Format View
AplMat_49-2004-5_3.pdf 3.640Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo