Previous |  Up |  Next

Article

Title: On solution to an optimal shape design problem in 3-dimensional linear magnetostatics (English)
Author: Lukáš, Dalibor
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 49
Issue: 5
Year: 2004
Pages: 441-464
Summary lang: English
.
Category: math
.
Summary: In this paper we present theoretical, computational, and practical aspects concerning 3-dimensional shape optimization governed by linear magnetostatics. The state solution is approximated by the finite element method using Nédélec elements on tetrahedra. Concerning optimization, the shape controls the interface between the air and the ferromagnetic parts while the whole domain is fixed. We prove the existence of an optimal shape. Then we state a finite element approximation to the optimization problem and prove the convergence of the approximated solutions. In the end, we solve the problem for the optimal shape of an electromagnet that arises in the research on magnetooptic effects and that was manufactured afterwards. (English)
Keyword: optimal shape design
Keyword: finite element method
Keyword: magnetostatics
Keyword: magnetooptics
MSC: 35J40
MSC: 49J20
MSC: 65K10
MSC: 65N30
idZBL: Zbl 1099.49001
idMR: MR2086088
DOI: 10.1023/B:APOM.0000048122.27970.19
.
Date available: 2009-09-22T18:19:16Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134578
.
Reference: [1] D. Begis, R. Glowinski: Application de la méthode des éléments finis à la résolution d’un problème de domaine optimal. Méthodes de résolution des problèmes.Appl. Math. Optim. 2 (1975), 130–169. (French) MR 0443372, 10.1007/BF01447854
Reference: [2] A. Bossavit: Computational Electromagnetism. Variational Formulations, Complementarity, Edge Elements.Academic Press, Orlando, 1998. Zbl 0945.78001, MR 1488417
Reference: [3] D. Braess: Finite Elements. Theory, Fast Solvers, and Applications in Solid Mechanics.Cambridge University Press, Cambridge, 2001. Zbl 0976.65099, MR 1827293
Reference: [4] J. Chleboun, R. Mäkinen: Primal hybrid formulation of an elliptic equation in smooth optimal shape problems.Adv. Math. Sci. Appl. 5 (1995), 139–162. MR 1325963
Reference: [5] P. Doktor: On the density of smooth functions in certain subspaces of Sobolev spaces.Comment. Math. Univ. Carolin. 14 (1973), 609–622. MR 0336317
Reference: [6] G. E.  Farin: Curves and Surfaces for Computer-Aided Geometric Design: A Practical Guide.Academic Press, Boston, 1997. Zbl 0919.68120, MR 1412572
Reference: [7] V. Girault, P.-A. Raviart: Finite Element Methods for Navier-Stokes equations. Theory and Algorithms.Springer-Verlag, Berlin, 1986. MR 0851383
Reference: [8] W. Hackbusch, S. A.  Sauter: Composite finite elements for the approximation of PDEs on domains with complicated micro-structures.Numer. Math. 75 (1997), 447–472. MR 1431211, 10.1007/s002110050248
Reference: [9] W. Hackbusch, S. A.  Sauter: Composite finite elements for problems containing small geometric details. II:  Implementation and numerical results.Comput. Vis. Sci. 1 (1997), 15–25. 10.1007/s007910050002
Reference: [10] J. Haslinger, T. Kozubek: A fictitious domain approach for a class of Neumann boundary value problems with applications in shape optimization.East-West J.  Numer. Math. 8 (2000), 1–23. MR 1757143
Reference: [11] J. Haslinger, P. Neittaanmäki: Finite Element Approximation for Optimal Shape, Material and Topology Design, 2nd ed.Wiley, Chichester, 1996. MR 1419500
Reference: [12] R. Hiptmair: Multilevel preconditioning for mixed problems in three dimensions.PhD. thesis, University of Augsburg, 1996. Zbl 0851.65089, MR 1399324
Reference: [13] I. Kopřiva, D. Hrabovský, K. Postava, D. Ciprian, and J. Pištora: Anisotropy of the quadratic magneto-optical effects in a cubic crystal.Proceedings of SPIE, Vol. 4016, 2000, pp. 54–59.
Reference: [14] M. Křížek, P. Neittaanmäki: Mathematical and Numerical Modelling in Electrical Engineering. Theory and Practice.Kluwer Academic Publishers, Dordrecht, 1996. MR 1431889
Reference: [15] M. Kuhn, U. Langer, and J. Schöberl: Scientific computing tools for 3d magnetic field problems.In: The Mathematics of Finite Elements and Applications. Proceedings of the 10th conference MAFELAP, 1999, J R. Whiteman (ed.), 2000, pp. 239–258. MR 1801980
Reference: [16] D. Lukáš: Shape optimization of homogeneous electromagnets.Scientific Computing in Electrical Engineering. Lect. Notes Comput. Sci. Eng. Vol. 18, U.  van Rienen, M. Günther, and D.  Hecht (eds.), 2001, pp. 145–152. Zbl 1013.78012
Reference: [17] D. Lukáš: Optimal Shape Design in Magnetostatics. PhD. thesis.VŠB-Technical University, Ostrava, 2003.
Reference: [18] D. Lukáš, I. Kopřiva, D. Ciprian, and J. Pištora: Shape optimization of homogeneous electromagnets and their application to measurements of magnetooptic effects.Records of COMPUMAG (2001), 156–157.
Reference: [19] D. Lukáš, W. Mühlhuber, and M. Kuhn: An object-oriented library for the shape optimization problems governed by systems of linear elliptic partial differential equations.Transactions of the VŠB-Technical University Ostrava 1 (2001), 115–128.
Reference: [20] D. Lukáš, D. Ciprian, J. Pištora, K. Postava, and M. Foldyna: Multilevel solvers for 3-dimensional optimal shape design with an application to magneto-optics.Proceedings of the 9th International Symposium on Microwave and Optical Technology (ISMOT  2003, Ostrava), SPIE Vol. 5445, 2004, pp. 235–239.
Reference: [21] J. Lukeš, J. Malý: Measure and Integral.MATFYZPRESS, Praha, 1995. MR 2316454
Reference: [22] J. C.  Nédélec: Mixed finite elements in  $\mathbb{R}^3$.Numer. Math. 35 (1980), 315–341. 10.1007/BF01396415
Reference: [23] O. Pironneau: Optimal Shape Design for Elliptic Systems. Springer Series in Computational Physics.Springer-Verlag, New York, 1984. MR 0725856
Reference: [24] J. Pištora, K. Postava, and R. Šebesta: Optical guided modes in sandwiches with ultrathin metallic films.Journal of Magnetism and Magnetic Materials 198–199 (1999), 683–685.
Reference: [25] K. Postava, D. Hrabovský, J. Pištora, A. R.  Fert, Š.  Višňovský, and T. Yamaguchi: Anisotropy of quadratic magneto-optic effects in reflection.J.  Appl. Phys. 91 (2002), 7293–7295. 10.1063/1.1449436
Reference: [26] P.-A.  Raviart and J. M.  Thomas: A mixed finite element method for second order elliptic problems.Lecture Notes in Math. 606 (1977), 292–315. MR 0483555, 10.1007/BFb0064470
Reference: [27] S. Reitzinger, J. Schöberl: An algebraic multigrid method for finite element discretizations with edge elements.Numer. Linear Algebra Appl. 9 (1997), 223–238. MR 1893828
Reference: [28] J. Schöberl: NETGEN: An advancing front 2D/3D-mesh generator based on abstract rules.Comput. Vis. Sci. 1 (1997), 41–52. 10.1007/s007910050004
Reference: [29] N. Takahashi: Optimization of die press model.Proceedings of the TEAM Workshop in the Sixth Round (Okayama, Japan), March 1996.
Reference: [30] U. van Rienen: Numerical methods in computational electrodynamics.Linear Systems in Practical Applications, Lect. Notes Comp. Sci. Engrg. Vol.  12, Springer-Verlag, Berlin, 2001. Zbl 0977.78023, MR 1790270
Reference: [31] A. K.  Zvedin, V. A.  Kotov: Modern Magnetooptics and Magnetooptical Materials.Institute of Physics Publishing, Bristol and Philadelphia, 1997.
.

Files

Files Size Format View
AplMat_49-2004-5_4.pdf 3.104Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo