Previous |  Up |  Next


Daubechies wavelets; computing scaling integrals; two-point boundary value problems
In this paper, Daubechies wavelets on intervals are investigated. An analytic technique for evaluating various types of integrals containing the scaling functions is proposed; they are compared with classical techniques. Finally, these results are applied to two-point boundary value problems.
[1] J. J. Benedetto, M. W.  Frazier: Wavelets: Mathematics and Applications. Studies in Advanced Mathematics. CRC Press, Boca Raton, 1994. MR 1247511
[2] A. Cohen: Wavelet Methods in Numerical Analysis. Handbook of Numerical Analysis, Vol. 7. P. G. Ciarlet at al. (eds.), North-Holland/Elsevier, Amsterdam, 2000, pp. 417–711. MR 1804747
[3] I.  Daubechies: Orthonormal bases of compactly supported wavelets. Commun. Pure Appl. Math. 41 (1988), 909–996. DOI 10.1002/cpa.3160410705 | MR 0951745 | Zbl 0644.42026
[4] I. Daubechies: Ten Lectures on Wavelets. SIAM Publ., Philadelphia, 1992. MR 1162107 | Zbl 0776.42018
[5] R. J. Duffin, A. C. Schaeffer: A class of nonharmonic Fourier series. Trans. Amer. Math. Soc. 72 (1952), 341–366. DOI 10.1090/S0002-9947-1952-0047179-6 | MR 0047179
[6] V.  Finěk: Daubechies wavelets and two-point boundary value problems. Preprint, TU Dresden, 2001.
[7] R.  Glowinski, W.  Lawton, M.  Ravachol, and E. Tenenbaum: Wavelet solution of linear and nonlinear elliptic, parabolic and hyperbolic problems in one space dimension. Computing Methods in Applied Sciences and Engineering, Proc. 9th Int. Conf. Paris, 1990, pp. 55–120. MR 1102021
[8] Ch. Grossmann, H.-G.  Roos: Numerik partieller Differentialgleichungen, 2. edition. Teubner, Stuttgart, 1994. MR 1312608
[9] C. Heil: Wavelets and frames, Signal processing, Part  I: Signal processing theory. Proc. Lect, , Minneapolis, 1988.
[10] A. Kunoth: Wavelet Methods—Elliptic Boundary Value Problems and Control Problems. Advances in Numerical Mathematics. Teubner, Stuttgart, 2001. MR 1852351
[11] W. Lawton: Necessary and sufficient conditions for constructing orthonormal wavelet bases. J.  Math. Phys. 32 (1991). MR 1083085 | Zbl 0757.46012
[12] A. K. Louis, P.  Maas, A. Rieder: Wavelets: Theorie und Anwendungen. Teubner, Stuttgart, 1994. (German) MR 1371382
[13] Y.  Meyer: Ondelettes et Opérateurs  I—Ondelettes. Hermann Press, Paris, 1990, English translation: Wavelets and Operators, Cambridge University Press, (1992). MR 1085487 | Zbl 0694.41037
[14] Y. Meyer: Ondelettes sur l’intervalle. Rev. Math. Iberoamer. 7 (1991), 115–133. (French) MR 1133374 | Zbl 0753.42015
[15] Z.-Ch.  Shann, J.-Ch.  Yan: Quadratures involving polynomials and Daubechies’ wavelets. Preprint, National Central University, Chung-Li, Taiwan, R.O.C., April, (1994).
[16] W.-Ch. Shann, J.-Ch. Xu: Galerkin-wavelet methods for two-point boundary value problems. Numer. Math. 63 (1992), 123–144. DOI 10.1007/BF01385851 | MR 1182515 | Zbl 0771.65050
[17] W.  Sweldens, R.  Piessens: Quadrature formulae and asymptotic error expansions for wavelet approximation of smooth functions. SIAM J.  Numer. Anal. 31 (1994), 1240–1264. DOI 10.1137/0731065 | MR 1286226
[18] P. Wojtaszczyk: A Mathematical Introduction to Wavelets. Cambridge University Press, Cambridge, 1997. MR 1436437 | Zbl 0865.42026
Partner of
EuDML logo