Previous |  Up |  Next

Article

Title: Modeling, mathematical and numerical analysis of electrorheological fluids (English)
Author: Růžička, Michael
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 49
Issue: 6
Year: 2004
Pages: 565-609
Summary lang: English
.
Category: math
.
Summary: Many electrorheological fluids are suspensions consisting of solid particles and a carrier oil. If such a suspension is exposed to a strong electric field the effective viscosity increases dramatically. In this paper we first derive a model which captures this behaviour. For the resulting system of equations we then prove local in time existence of strong solutions for large data. For these solutions we finally derive error estimates for a fully implicit time-discretization. (English)
Keyword: Maxwell's equations
Keyword: electrorheological fluids
Keyword: constitutive relations
Keyword: Galerkin approximation
MSC: 35Q35
MSC: 35Q60
MSC: 65M15
MSC: 65M60
MSC: 76A05
MSC: 76D03
MSC: 76W05
idZBL: Zbl 1099.35103
idMR: MR2099981
DOI: 10.1007/s10492-004-6432-8
.
Date available: 2009-09-22T18:20:03Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134585
.
Reference: [1] B. Abu-Jdayil, P. O. Brunn: Effects of nonuniform electric field on slit flow of an electrorheological fluid.J. Rheol. 39 (1995), 1327–1341.
Reference: [2] B. Abu-Jdayil, P. O. Brunn: Effects of electrode morphology on the slit flow of an electrorheological fluid.J. Non-Newtonian Fluid Mech. 63 (1966), 45–61.
Reference: [3] B. Abu-Jdayil, P. O. Brunn: Study of the flow behaviour of electrorheological fluids at shear- and flow- mode.Chem. Eng. and Proc. 36 (1997), 281–289. 10.1016/S0255-2701(97)00002-0
Reference: [4] W. Bao, J. W. Barrett: A priori and a posteriori error bounds for a nonconforming linear finite element approximation of a non-Newtonian flow.RAIRO Modél. Math. Anal. Numér. 32 (1998), 843–858. MR 1654432, 10.1051/m2an/1998320708431
Reference: [5] J. Baranger, K. Najib, and D. Sandri: Numerical analysis of a three-fields model for a quasi-Newtonian flow.Comput. Methods Appl. Mech. Engrg. 109 (1993), 281–292. MR 1245979, 10.1016/0045-7825(93)90082-9
Reference: [6] H. Bellout, F.  Bloom, and J.  Nečas: Young measure-valued solutions for non-Newtonian incompressible fluids.Comm. Partial Differential Equations 19 (1994), 1763–1803. MR 1301173, 10.1080/03605309408821073
Reference: [7] R. Bloodworth: Electrorgeological fluids based on polyurethane dispersions.In: Electrorheological Fluids, R. Tao, G. D. Roy (eds.), World Scientific, 1994, pp. 67–83.
Reference: [8] R. Bloodworth, E. Wendt: Materials for ER-fluids.Int. J. Mod. Phys.  B 23/24 (1996), 2951–2964.
Reference: [9] B. D. Coleman, W. Noll: The thermodynamics of elastic materials with heat conduction and viscosity.Arch. Rational Mech. Anal. 13 (1963), 167–178. MR 0153153, 10.1007/BF01262690
Reference: [10] L. Diening: Maximal function on generalized Lebesgue spaces $L^{p(\cdot )}$.Math. Inequ. Appl. 7 (2004), 245–253, Preprint 2002-02, University Freiburg. Zbl 1071.42014, MR 2057643
Reference: [11] L. Diening: Riesz potential and Sobolev embeddings on generalized Lebesgue and Sobolev spaces $L^{p(\cdot )}$ and $W^{k,p(\cdot )}$.Math. Nachr. 268 (2004), 31–43. Zbl 1065.46024, MR 2054530, 10.1002/mana.200310157
Reference: [12] L. Diening: Theoretical and numerical results for electrorheological fluids.PhD. thesis, University Freiburg, 2002. Zbl 1022.76001
Reference: [13] L. Diening, A. Prohl, and M. Růžička: On time discretizations for generalized Newtonian fluids.In: Nonlinear Problems in Mathematical Physics and Related Topics II. In honour of Professor O. A. Ladyzhenskaya, M. Sh. Birman, S. Hildebrandt, V. Solonnikov, and N. N. Uraltseva (eds.), Kluwer/Plenum, New York, 2002, pp. 89–118. MR 1971992
Reference: [14] L. Diening, M. Růžička: Strong solutions for generalized Newtonian fluids.J. Math. Fluid. Mech, Accepted. Preprint  2003-8, University Freiburg. MR 2166983
Reference: [15] L. Diening, M. Růžička: Calderón-Zygmund operators on generalized Lebesgue spaces $L^{p(\cdot )}$ and problems related to fluid dynamics.J. Reine Angew. Math. 563 (2003), 197–220. MR 2009242
Reference: [16] L. Diening, M. Růžička: Integral operators on the halfspace in generalized Lebesgue spaces $L^{p(\cdot )}$, Part  I.J. Math. Anal. Appl. (2004), 559–571. MR 2086975
Reference: [17] L. Diening, M. Růžička: Integral operators on the halfspace in generalized Lebesgue spaces $L^{p(\cdot )}$, Part II.J. Math. Anal. Appl. (2004), 572–588. MR 2086976
Reference: [18] W. Eckart: Theoretische Untersuchungen von elektrorheologischen Flüssigkeiten bei homogenen und inhomogenen elektrischen Feldern.Shaker Verlag, Aachen, 2000. Zbl 0958.76003
Reference: [19] W. Eckart, M. Růžička: Modeling micropolar electrorheological fluids.Accepted. Preprint  2003-11, University Freiburg.
Reference: [20] A. C. Eringen, G. Maugin: Electrodynamics of Continua, Vol. I and II.Springer-Verlag, New York, 1989.
Reference: [21] J. Frehse, J. Málek: Problems due to the no-slip boundary in incompressible fluid dynamics.In: Geometric Analysis and Nonlinear Partial Differential Equations, Springer-Verlag, Berlin, 2003, pp. 559–571. MR 2008356
Reference: [22] J.  Frehse, J.  Málek, and M. Steinhauer: An existence result for fluids with shear dependent viscosity—steady flows.Nonlinear Anal. 30 (1997), 3041–3049. MR 1602949
Reference: [23] M. Giaquinta, G. Modica, and J. Souček: Cartesian currents in the calculus of variations. II. Variational integrals.Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, Vol.  38, Springer-Verlag, Berlin, 1998. MR 1645082
Reference: [24] E. Giusti: Direct Methods in the Calculus of Variations.Unione Matematica Italiana, Bologna, 1994. (Italian) Zbl 0942.49002, MR 1707291
Reference: [25] R. A. Grot: Relativistic continuum physics: Electromagnetic interactions.In: Continuum Physics, A. C. Eringen (ed.), Academic Press, , 1976, pp. 130–221.
Reference: [26] T. C. Halsey, J. E. Martin, and D. Adolf: Rheology of Electrorheological Fluids.Phys. Rev. Letters 68 (1992), 1519–1522. 10.1103/PhysRevLett.68.1519
Reference: [27] K. Hutter, A. A. F. van de Ven: Field Matter Interactions in Thermoelastic Solids.Lecture Notes in Physics, Vol.  88, Springer-Verlag, Berlin, 1978. MR 0550607
Reference: [28] O. Kováčik, J. Rákosník: On spaces $L^{p(x)}$ and $W^{k,p(x)}$.Czechoslovak Math.  J. 41 (1991), 592–618.
Reference: [29] J. L. Lions: Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires.Dunod, Paris, 1969. (French) Zbl 0189.40603, MR 0259693
Reference: [30] J. Málek, J. Nečas, M. Rokyta, and M. Růžička: Weak and Measure-Valued Solutions to Evolutionary PDEs. Applied Mathematics and Mathematical Computations, Vol. 13.Chapman & Hall, London, 1996. MR 1409366
Reference: [31] J. Málek, J. Nečas, and M. Růžička: On the non-Newtonian incompressible fluids.Math. Models Methods Appl. Sci. 3 (1993), 35–63. MR 1203271, 10.1142/S0218202593000047
Reference: [32] J. Málek, J. Nečas, and M. Růžička: On weak solutions to a class of non-Newtonian incompressible fluids in bounded three-dimensional domains. The case $p\ge 2$.Adv. Differential Equations 6 (2001), 257–302. MR 1799487
Reference: [33] J. Málek, K. R. Rajagopal, and M. Růžička: Existence and regularity of solutions and the stability of the rest state for fluids with shear dependent viscosity.Math. Models Methods Appl. Sci. 5 (1995), 789–812. MR 1348587, 10.1142/S0218202595000449
Reference: [34] A. Milani, R. Picard: Decomposition theorems and their application to non-linear electro- and magneto-static boundary value problems.Lecture Notes in Math., Vol. 1357, Springer-Verlag, 1988, pp. 317–340. MR 0976242
Reference: [35] Y. H. Pao: Electromagnetic forces in deformable continua.Mechanics Today, Vol. 4, S.  Nemat-Nasser (ed.), Pergamon Press, 1978, pp. 209–306. Zbl 0379.73100
Reference: [36] M. Parthasarathy, D. J. Klingenberg: Mechanism and models.Materials, Sciences and Engineering R17 (1966), 57–103.
Reference: [37] A. Prohl, M. Růžička: On fully implicit space-time discretization for motions of incompressible fluids with shear dependent viscosities: The case $p\le 2$.SIAM J. Numer. Anal. 39 (2001), 241–249. MR 1860723
Reference: [38] K. R. Rajagopal, M. Růžička: On the modelling of electrorheological materials.Mech. Research Comm. 23 (1996), 401–407. 10.1016/0093-6413(96)00038-9
Reference: [39] K. R. Rajagopal, M. Růžička: Mathematical modelling of electrorheological materials.Cont. Mech. and Thermodynamics 13 (2001), 59–78. 10.1007/s001610100034
Reference: [40] : Helsinki research group on variable exponent Lebesgue and Sobolev spaces.http: //www.math.helsinki.fi/analysis/varsobgroup/.
Reference: [41] M. Růžička: A note on steady flow of fluids with shear dependent viscosity. Proceedings of the Second World Congress of Nonlinear Analysts (Athens, 1996).Nonlinear Anal. 30 (1997), 3029–3039. MR 1602945
Reference: [42] M. Růžička: Flow of shear dependent electrorheological fluids: Unsteady space periodic case.In: Applied Nonlinear Analysis, A. Sequeira (ed.), Kluwer/Plenum, New York, 1999, pp. 485–504. MR 1727468
Reference: [43] M. Růžička: Electrorheological fluids: Modeling and mathematical theory.RIMS  Kokyuroku 1146 (2000), 16–38. MR 1788852
Reference: [44] M. Růžička: Electrorheological Fluids: Modeling and Mathematical Theory. Lecture Notes in Mathematics, Vol.  1748.Springer-Verlag, Berlin, 2000. MR 1810360
Reference: [45] C. Truesdell, W. Noll: The Non-Linear Field Theories of Mechanics. Handbuch der Physik, Vol.  III/3.Springer-Verlag, New York, 1965. MR 0193816
Reference: [46] T. Wunderlich: Der Einfluß der Elektrodenoberfläche und der Strömungsform auf den elektrorheologischen Effekt.PhD. thesis, University Erlangen-Nürnberg, 2000.
Reference: [47] T. Wunderlich, P. O. Brunn: Pressure drop measurements inside a flat channel—with flush mounted and protruding electrodes of varable length—using an electrorheological fluid.Experiments in Fluids 28 (2000), 455–461. 10.1007/s003480050405
.

Files

Files Size Format View
AplMat_49-2004-6_4.pdf 4.756Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo