Previous |  Up |  Next

Article

Title: PDE models for chemotactic movements: Parabolic, hyperbolic and kinetic (English)
Author: Perthame, Benoît
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 49
Issue: 6
Year: 2004
Pages: 539-564
Summary lang: English
.
Category: math
.
Summary: Modeling the movement of cells (bacteria, amoeba) is a long standing subject and partial differential equations have been used several times. The most classical and successful system was proposed by Patlak and Keller & Segel and is formed of parabolic or elliptic equations coupled through a drift term. This model exhibits a very deep mathematical structure because smooth solutions exist for small initial norm (in the appropriate space) and blow-up for large norms. This reflects experiments on bacteria like Escherichia coli or amoeba like Dictyostelium discoïdeum exhibiting pointwise concentrations. For human endothelial cells, several experiments show the formation of networks that can be interpreted as the initiation of angiogenesis. To recover such patterns a hydrodynamical model seems better adapted. The two systems can be unified by a kinetic approach that was proposed for Escherichia coli, based on more precise experiments showing a movement by ‘jump and tumble’. This nonlinear kinetic model is interesting by itself and the existence theory is not complete. It is also interesting from a scaling point of view; in a diffusion limit one recovers the Keller-Segel model and in a hydrodynamical limit one recovers the model proposed for human endothelial cells. We also mention the mathematical interest of analyzing another degenerate parabolic system (exhibiting different properties) proposed to describe the angiogenesis phenomena i.e. the formation of capillary blood vessels. (English)
Keyword: chemotaxis
Keyword: angiogenesis
Keyword: degenerate parabolic equations
Keyword: kinetic equations
Keyword: global weak solutions
Keyword: blow-up
MSC: 35B40
MSC: 35B60
MSC: 35Q80
MSC: 92C17
MSC: 92C50
idZBL: Zbl 1099.35157
idMR: MR2099980
DOI: 10.1007/s10492-004-6431-9
.
Date available: 2009-09-22T18:19:57Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134584
.
Reference: [1] W.  Alt: Biased random walk models for chemotaxis and related diffusion approximations.J.  Math. Biol. 9 (1980), 147–177. Zbl 0434.92001, MR 0661424, 10.1007/BF00275919
Reference: [2] W.  Alt, G.  Hoffmann: Biological motion. Proceedings of a workshop held in Königswinter, Germany, March 16–19, 1989. Lecture Notes in Biomathematics, 89.Springer-Verlag, Berlin, 1990.
Reference: [3] A. R. A.  Anderson, M. A. J.  Chaplain: A mathematical model for capillary network formation in the absence of endothelial cell proliferation.Appl. Math. Lett. 11 (1998), 109–114. 10.1016/S0893-9659(98)00041-X
Reference: [4] C.  Bardos, R.  Santos, and R.  Sentis: Diffusion approximation and computation of the critical size.Trans. Amer. Math. Soc. 284 (1984), 617–649. MR 0743736, 10.1090/S0002-9947-1984-0743736-0
Reference: [5] N.  Bellomo, L.  Preziosi: Modelling and mathematical problems related to tumor evolution and its interaction with the immune system.Math. Comput. Modelling 32 (2000), 413–452. MR 1775113, 10.1016/S0895-7177(00)00143-6
Reference: [6] M. D.  Betterton, M. P.  Brenner: Collapsing bacterial cylinders.Phys. Rev.  E 64 (2001). 10.1103/PhysRevE.64.061904
Reference: [7] P.  Biler: Global solutions to some parabolic-elliptic systems of chemotaxis.Adv. Math. Sci. Appl. 9 (1999), 347–359. Zbl 0941.35009, MR 1690388
Reference: [8] P.  Biler, T.  Nadzieja: A class of nonlocal parabolic problems occurring in statistical mechanics.Colloq. Math. 66 (1993), 131–145. MR 1242651, 10.4064/cm-66-1-131-145
Reference: [9] P.  Biler, T.  Nadzieja: Global and exploding solutions in a model of self-gravitating systems.Rep. Math. Phys. 52 (2003), 205–225. MR 2016216, 10.1016/S0034-4877(03)90013-9
Reference: [10] M. P.  Brenner, P. Constantin, L. P.  Kadanoff, A. Schenkel, and S. C. Venkataramani: Diffusion, attraction and collapse.Nonlinearity 12 (1999), 1071–1098. MR 1709861, 10.1088/0951-7715/12/4/320
Reference: [11] M. P.  Brenner, L.  Levitov, and E. O.  Budrene: Physical mechanisms for chemotactic pattern formation by bacteria.Biophysical Journal 74 (1995), 1677–1693. 10.1016/S0006-3495(98)77880-4
Reference: [12] C.  Cercignani, R.  Illner, and M.  Pulvirenti: The Mathematical Theory of Dilute Gases.Applied Math. Sciences Vol. 106, Springer-Verlag, New York, 1994. MR 1307620
Reference: [13] F.  Chalub, P.  Markowich, B.  Perthame, and C.  Schmeiser: Kinetic models for chemotaxis and their drift-diffusion limits.Monatsh. Math. 142 (2004), 123–141. MR 2065025, 10.1007/s00605-004-0234-7
Reference: [14] M. A. J.  Chaplain: Avascular growth, angiogenesis and vascular growth in solid tumors: the mathematical modelling of the stages of tumor development.Math. Comput. Modelling 23 (1996), 47–87. 10.1016/0895-7177(96)00019-2
Reference: [15] M. A. J.  Chaplain, L.  Preziosi: Macroscopic modelling of the growth and developement of tumor masses.Preprint No.  27, Politecnico di Torino, 2000.
Reference: [16] L. Corrias, B.  Perthame, and H.  Zaag: A chemotaxis model motivated by angiogenesis.C. R. Acad. Sci.  Paris, Ser.  I 336 (2003), 141–146. MR 1969568, 10.1016/S1631-073X(02)00008-0
Reference: [17] L. Corrias, B. Perthame, and H.  Zaag: Global solutions of some chemotaxis and angiogenesis systems in high space dimensions.Milano J.  Math. 72 (2004), 1–29. MR 2099126, 10.1007/s00032-003-0026-x
Reference: [18] F. A.  Davidson, A. R. A.  Anderson, and M. A. J.  Chaplain: Steady-state solutions of a generic model for the formation of capillary networks.Appl. Math. Lett. 13 (2000), 127–132. MR 1760274, 10.1016/S0893-9659(00)00044-6
Reference: [19] P.  Degond, T.  Goudon, and F.  Poupaud: Diffusion limit for nonhomogeneous and non-micro-reversible processes.Indiana Univ. Math.  J. 49 (2000), 1175–1198. MR 1803225
Reference: [20] Y.  Dolak, T.  Hillen: Cattaneo models for chemotaxis, numerical solution and pattern formation.J.  Math. Biol. 46 (2003), 461–478. MR 1963070
Reference: [21] J.  Dolbeault, B.  Perthame: Optimal critical mass in the two dimensional Keller-Segel model in $\mathbb{R}^2$.C. R. Acad. Sci. (2004) (to appear). MR 2103197
Reference: [22] Y.  Dolak, C.  Schmeiser: Kinetic Models for Chemotaxis. ANUM preprint.(2003). MR 2093271
Reference: [23] L. C.  Evans: Partial Differential Equations.Amer. Math. Soc., Providence, 1998. Zbl 0902.35002
Reference: [24] F.  Filbet, P.  Laurençot, and B.  Perthame: Derivation of hyperbolic models for chemosensitive movement. Preprint.Ecole Normale Supérieure, 2003. MR 2120548
Reference: [25] M. A.  Fontelos, A. Friedman, and B.  Hu: Mathematical analysis of a model for the initiation of angiogenesis.SIAM J.  Math. Anal. 33 (2002), 1330–1355. MR 1920634, 10.1137/S0036141001385046
Reference: [26] A.  Friedman, I.  Tello: Stability of solutions of chemotaxis equations in reinforced random walks.J.  Math. Anal. Appl. 272 (2002), 138–163. MR 1930708, 10.1016/S0022-247X(02)00147-6
Reference: [27] H.  Gajewski, K.  Zacharias: Global behaviour of a reaction-diffusion system modelling chemotaxis.Math. Nachr. 195 (1998), 77–114. MR 1654677, 10.1002/mana.19981950106
Reference: [28] A.  Gamba, D.  Ambrosi, A.  Coniglio, A.  de Candia, S.  Di  Talia, E.  Giraudo, G.  Serini, L.  Preziosi, and F.  Bussolino: Percolation, morphogenesis, and Burgers dynamics in blood vessels formation.Phys. Rev. Lett. 90 (2003), . 10.1103/PhysRevLett.90.118101
Reference: [29] I. Gasser, P.-E. Jabin, and B. Perthame: Regularity and propagation of moments in some nonlinear Vlasov systems.Proc. Roy. Soc. Edinburgh Sect.  A 130 (2000), 1259–1273. MR 1809103, 10.1017/S0308210500000676
Reference: [30] R. T.  Glassey: The Cauchy Problem in Kinetic Theory.SIAM, Philadelphia, 1996. Zbl 0858.76001, MR 1379589
Reference: [31] M. A.  Herrero, J. J. L.  Velázquez: Singularity patterns in a chemotaxis model.Math. Ann. 306 (1996), 583–623. MR 1415081, 10.1007/BF01445268
Reference: [32] M. A.  Herrero, E. Medina, and J. J. L. Velázquez: Finite-time aggregation into a single point in a reaction-diffusion system.Nonlinearity 10 (1997), 1739–1754. MR 1483563, 10.1088/0951-7715/10/6/016
Reference: [33] T.  Hillen, H.  Othmer: The diffusion limit of transport equations derived from velocity-jump processes.SIAM  J.  Appl. Math. 61 (2000), 751–775. MR 1788017, 10.1137/S0036139999358167
Reference: [34] D.  Horstmann: Lyapunov functions and $L^p$  estimates for a class of reaction-diffusion systems.Colloq. Math. 87 (2001), 113–127. Zbl 0966.35022, MR 1812147, 10.4064/cm87-1-7
Reference: [35] D.  Horstmann: From  1970 until present: the Keller-Segel model in chemotaxis and its consequences.Jahresber. Dtsch. Math.-Ver. Vol. 105, 2003, pp. 103–165. Zbl 1071.35001, MR 2013508
Reference: [36] H. J.  Hwang, K.  Kang, and A.  Stevens: Global solutions of nonlinear transport equations for chemosensitive movement.SIAM J. Math. Anal (to appear). MR 2139206
Reference: [37] W.  Jäger, S.  Luckhaus: On explosions of solutions to a system of partial differential equations modelling chemotaxis.Trans. Amer. Math. Soc. 329 (1992), 819–824. MR 1046835, 10.1090/S0002-9947-1992-1046835-6
Reference: [38] E. F.  Keller: Assessing the Keller-Segel model: How has it fared? Biological growth and spread.Proc. Conf., Heidelberg,  1979. Lecture Notes in Biomath. Vol. 38, Springer-Verlag, Berlin-New York, 1980, pp. 379–387. MR 0609374
Reference: [39] E. F.  Keller, L. A.  Segel: Initiation of slime mold aggregation viewed as an instability.J.  Theoret. Biol. 26 (1970), 399–415. 10.1016/0022-5193(70)90092-5
Reference: [40] E. F.  Keller, L. A.  Segel: Model for chemotaxis.J.  Theoret. Biol. 30 (1971), 225–234. 10.1016/0022-5193(71)90050-6
Reference: [41] E. F.  Keller, L. A.  Segel: Travelling bands of chemotactic bacteria: a theoretical analysis.J.  Theoret. Biol. 30 (1971), 235–248. 10.1016/0022-5193(71)90051-8
Reference: [42] H. A.  Levine, B. D.  Sleeman: A system of reaction diffusion equations arising in the theory of reinforced random walks.SIAM J.  Appl. Math. 57 (1997), 683–730. MR 1450846, 10.1137/S0036139995291106
Reference: [43] H. A.  Levine, B. D.  Sleeman: Partial differential equations of chemotaxis and angiogenesis.Math. Methods Appl. Sci. 24 (2001), 405–426. MR 1821934, 10.1002/mma.212
Reference: [44] H. A.  Levine, M.  Nilsen-Hamilton, and B. D. Sleeman: Mathematical modelling of the onset of capillary formation initiating angiogenesis.J. Math. Biol. 42 (2001), 195–238. MR 1828815
Reference: [45] P. K.  Maini: Applications of mathematical modelling to biological pattern formation. Coherent Structures in Complex Systems (Sitges, 2000).Lecture Notes in Phys. Vol.  567, Springer-Verlag, Berlin, 2001, pp. 205–217. MR 1995108
Reference: [46] D.  Manoussaki: Modeling and simulation of the formation of vascular networks.ESAIM Proc. 12 (2002 (electronic)), 108–114. 10.1051/proc:2002018
Reference: [47] A.  Marrocco: 2D simulation of chemotactic bacteria agreggation.ESAIM: Math. Model. Numer. Anal. 37 (2003), 617–630. MR 2018433, 10.1051/m2an:2003048
Reference: [48] P.  Michel, S.  Mischler, and B.  Perthame: General entropy equations for structured population models and scattering.C.  R.  Acad. Sci. Paris (to appear). MR 2065377
Reference: [49] J. D.  Murray: Mathematical Biology, Vol.  2, third revised edition. Spatial Models and Biomedical Applications.Springer-Verlag, , 2003. MR 1952568
Reference: [50] T.  Nagai: Blow-up of radially symmetric solutions to a chemotaxis system.Adv. Math. Sci. Appl. 5 (1995), 581–601. Zbl 0843.92007, MR 1361006
Reference: [51] T.  Nagai, T.  Senba: Global existence and blow-up of radial solutions to a parabolic-elliptic system of chemotaxis.Adv. Math. Sci. Appl. 8 (1998), 145–156. MR 1623326
Reference: [52] J. Nieto, F. Poupaud, and J.  Soler: High field limit for the Vlasov-Poisson-Fokker-Planck system.Arch. Rational. Mech. Anal. 158 (2001), 29–59. MR 1834113, 10.1007/s002050100139
Reference: [53] H. G.  Othmer, A. Stevens: Aggregation, blowup and collapse: the ABC’s of taxis in reinforced random walks.SIAM J.  Appl. Math. 57 (1997), 1044–1081. MR 1462051, 10.1137/S0036139995288976
Reference: [54] H. G. Othmer, S. R.  Dunbar, and W.  Alt: Models of dispersal in biological systems.J.  Math. Biol. 26 (1988), 263–298. MR 0949094, 10.1007/BF00277392
Reference: [55] C. S.  Patlak: Random walk with persistence and external bias.Bull. Math. Biophys. 15 (1953), 311–338. MR 0081586, 10.1007/BF02476407
Reference: [56] B.  Perthame: Mathematical tools for kinetic equations.Bull.  Amer. Math. Soc. (NS) 41 (2004), 205–244. Zbl 1151.82351, MR 2043752, 10.1090/S0273-0979-04-01004-3
Reference: [57] M.  Rascle: On a system of non-linear strongly coupled partial differential equations arising in biology. Proc. Conf. on  Ordinary and Partial Differential Equation.Lectures Notes in Math. Vol. 846, Everitt and Sleeman (eds.), Springer-Verlag, New-York, 1981, pp. 290–298.
Reference: [58] M.  Rascle, C.  Ziti: Finite time blow-up in some models of chemotaxis.J.  Math. Biol. 33 (1995), 388–414. MR 1320430, 10.1007/BF00176379
Reference: [59] G.  Serini, D.  Ambrosi, E.  Giraudo, A.  Gamba, L.  Preziosi, and F.  Bussolino: Modeling the early stages of vascular network assembly.The EMBO Journal 22 (2003), 1771–1779. 10.1093/emboj/cdg176
Reference: [60] T.  Sanba and T.  Suzuki: Weak solutions to a parabolic-elliptic system of chemotaxis.J.  Functional. Analysis 47 (2001), 17–51. MR 1909263
Reference: [61] H. R. Schwetlick: Travelling fronts for multidimensional nonlinear transport equations. Ann. Inst. H.  Poincaré.Anal. non Linéaire 17 (2000), 523–550. MR 1782743, 10.1016/S0294-1449(00)00127-X
Reference: [62] A.  Stevens: The derivation of chemotaxis equations as limit dynamics of moderately interacting stochastic many-particle systems.SIAM J.  Appl. Math. 61 (2000), 183–212. Zbl 0963.60093, MR 1776393, 10.1137/S0036139998342065
Reference: [63] A.  Stevens, M.  Schwelick: Work in preparation..
Reference: [64] M. I.  Weinstein: Nonlinear Schrödinger equations and sharp interpolation estimates.Comm. Math. Phys. 87 (1983), 567–576. Zbl 0527.35023, MR 0691044, 10.1007/BF01208265
Reference: [65] Y.  Yang, H.  Chen, and W.  Liu: On existence of global solutions and blow-up to a system of reaction-diffusion equations modelling chemotaxis.SIAM J.  Math. Anal. 33 (2001), 763–785. MR 1884721, 10.1137/S0036141000337796
.

Files

Files Size Format View
AplMat_49-2004-6_3.pdf 4.296Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo