Previous |  Up |  Next

Article

Title: On complete-cocomplete subspaces of an inner product space (English)
Author: Buhagiar, David
Author: Chetcuti, Emanuel
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 50
Issue: 2
Year: 2005
Pages: 103-114
Summary lang: English
.
Category: math
.
Summary: In this note we give a measure-theoretic criterion for the completeness of an inner product space. We show that an inner product space $S$ is complete if and only if there exists a $\sigma $-additive state on $C(S)$, the orthomodular poset of complete-cocomplete subspaces of $S$. We then consider the problem of whether every state on $E(S)$, the class of splitting subspaces of $S$, can be extended to a Hilbertian state on $E(\bar{S})$; we show that for the dense hyperplane $S$ (of a separable Hilbert space) constructed by P. Pták and H. Weber in Proc. Am. Math. Soc. 129 (2001), 2111–2117, every state on $E(S)$ is a restriction of a state on $E(\bar{S})$. (English)
Keyword: Hilbert space
Keyword: inner product space
Keyword: orthogonally closed subspace
Keyword: complete and cocomplete subspaces
Keyword: finitely and $\sigma $-additive state
MSC: 03G12
MSC: 28A12
MSC: 46C05
MSC: 46N50
MSC: 81P10
idZBL: Zbl 1099.81010
idMR: MR2125153
DOI: 10.1007/s10492-005-0007-1
.
Date available: 2009-09-22T18:21:07Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134595
.
Reference: [1] J.  Amemiya, H.  Araki: A remark on Piron’s paper.Publ. Res. Inst. Math. Sci., Kyoto Univ., Ser.  A 2 (1966), 423–427. MR 0213266, 10.2977/prims/1195195769
Reference: [2] G.  Birkhoff, J.  von Neumann: The logic of quantum mechanics.Ann. Math. 37 (1936), 823–843. MR 1503312, 10.2307/1968621
Reference: [3] A. Dvurečenskij: Gleason’s Theorem and Its Applications.Kluwer Acad. Publ., Ister Science Press, Dordrecht, Bratislava, 1993. MR 1256736
Reference: [4] A.  Dvurečenskij, P.  Pták: On states on orthogonally closed subspaces of an inner product space.Lett. Math. Phys. 62 (2002), 63–70. MR 1952116, 10.1023/A:1021653216049
Reference: [5] A. M.  Gleason: Measures on the closed subspaces of a Hilbert space.J.  Math. Mech. 6 (1957), 885–893. Zbl 0078.28803, MR 0096113
Reference: [6] J.  Hamhalter, P.  Pták: A completeness criterion for inner product spaces.Bull. London Math. Soc. 19 (1987), 259–263. MR 0879514, 10.1112/blms/19.3.259
Reference: [7] G.  Kalmbach: Measures and Hilbert Lattices.World Sci. Publ. Co., Singapoore, 1986. Zbl 0656.06012, MR 0867884
Reference: [8] P.  Pták: ${\mathrm FAT}\leftrightarrow {\mathrm CAT}$ (in the state space of quantum logics).Proceedings of “Winter School of Measure Theory”, Liptovský Ján, Czechoslovakia, 1988, pp. 113–118. MR 1000201
Reference: [9] P.  Pták, H.  Weber: Lattice properties of subspace families in an inner product spaces.Proc. Am. Math. Soc. 129 (2001), 2111–2117. MR 1825924, 10.1090/S0002-9939-01-05855-5
.

Files

Files Size Format View
AplMat_50-2005-2_4.pdf 359.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo