Previous |  Up |  Next

Article

Title: A note on a generalization of Diliberto's Theorem for certain differential equations of higher dimension (English)
Author: Adamec, Ladislav
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 50
Issue: 2
Year: 2005
Pages: 93-101
Summary lang: English
.
Category: math
.
Summary: In the theory of autonomous perturbations of periodic solutions of ordinary differential equations the method of the Poincaré mapping has been widely used. For the analysis of properties of this mapping in the case of two-dimensional systems, a result first obtained probably by Diliberto in 1950 is sometimes used. In the paper, this result is (partially) extended to a certain class of autonomous ordinary differential equations of higher dimension. (English)
Keyword: Poincaré mapping
Keyword: variational equation
Keyword: moving orthogonal system
MSC: 34C05
MSC: 34C30
MSC: 34D10
MSC: 37E99
idZBL: Zbl 1099.37032
idMR: MR2125152
DOI: 10.1007/s10492-005-0006-2
.
Date available: 2009-09-22T18:21:00Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134594
.
Reference: [1] L. Adamec: Kinetical systems.Appl. Math. 42 (1997), 293–309. Zbl 0903.34043, MR 1453934, 10.1023/A:1023016529118
Reference: [2] L. Adamec: A note on the transition mapping for $n$-dimensional systems., Submitted.
Reference: [3] I. Agricola, T.  Friedrich: Global Analysis.American Mathematical Society, Rhode Island, 2002. MR 1998826
Reference: [4] J. Andres: On the multivalued Poincaré operators.Topol. Meth. Nonlin. Anal. 10 (1997), 171–182. Zbl 0909.47038, MR 1646627, 10.12775/TMNA.1997.027
Reference: [5] J. Andres: Poincarés translation multioperator revisted. In: Proceedings of the 3rd Polish Symposium of Nonlinear Analalysis, Łódź, January 29–31, 2001.Lecture Notes Nonlinear Anal. 3 (2002), 7–22.
Reference: [6] A. A. Andronov, E. A. Leontovich, I. I. Gordon, and I. I. Mayer: Theory of Bifurcation of Dynamical System on the Plane.John Wiley & Sons, New York-London-Sydney, 1973.
Reference: [7] C.  Chicone: Ordinary Differential Equations with Applications.Springer-Verlag, New York, 1999. Zbl 0937.34001, MR 1707333
Reference: [8] S. P. Diliberto: On systems of ordinary differential equations. In: Contributions to the Theory of Nonlinear Oscillations.Ann. Math. Stud. 20 (1950), 1–38. MR 0034931
Reference: [9] P.  Hartman: Ordinary Differential Equations.John Wiley & Sons, New York-London-Sydney, 1964. Zbl 0125.32102, MR 0171038
Reference: [10] J. Kurzweil: Ordinary Differential Equations.Elsevier, Amsterdam-Oxford-New York-Tokyo, 1986. Zbl 0667.34002, MR 0929466
Reference: [11] M. Medveď: A construction of realizations of perturbations of Poincaré maps.Math. Slovaca 36 (1986), 179–190. MR 0849709
Reference: [12] H. Poincaré: Les méthodes nouvelles de la mécanique céleste.Gauthier-Villars, Paris, 1892.
.

Files

Files Size Format View
AplMat_50-2005-2_3.pdf 324.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo