Previous |  Up |  Next

Article

Title: Conditions implying regularity of the three dimensional Navier-Stokes equation (English)
Author: Montgomery-Smith, Stephen
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 50
Issue: 5
Year: 2005
Pages: 451-464
Summary lang: English
.
Category: math
.
Summary: We obtain logarithmic improvements for conditions for regularity of the Navier-Stokes equation, similar to those of Prodi-Serrin or Beale-Kato-Majda. Some of the proofs make use of a stochastic approach involving Feynman-Kac-like inequalities. As part of our methods, we give a different approach to a priori estimates of Foiaş, Guillopé and Temam. (English)
Keyword: Navier-Stokes equation
Keyword: vorticity
Keyword: Prodi-Serrin condition
Keyword: Beale-Kato-Majda condition
Keyword: Orlicz norm
Keyword: stochastic method
MSC: 35B65
MSC: 35Q30
MSC: 46E30
MSC: 60H10
MSC: 60H30
MSC: 76D03
MSC: 76D05
idZBL: Zbl 1099.35086
idMR: MR2160072
DOI: 10.1007/s10492-005-0032-0
.
Date available: 2009-09-22T18:23:31Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134617
.
Reference: [1] J. T. Beale, T. Kato, and A. Majda: Remarks on the breakdown of smooth solutions for the $3$-D Euler equations.Comm. Math. Phys. 94 (1984), 61–66. MR 0763762, 10.1007/BF01212349
Reference: [2] B. Busnello, F. Flandoli, and M. Romito: A probabilistic representation for the vorticity of a 3D  viscous fluid and for general systems of parabolic equations.Preprint, http://arxiv.org/abs/math/0306075.
Reference: [3] M. Cannone: Wavelets, paraproducts and Navier-Stokes.Diderot Editeur, Paris, 1995. (French) Zbl 1049.35517, MR 1688096
Reference: [4] A. Chorin: Vorticity and Turbulence. Appl. Math. Sci., Vol.  103.Springer-Verlag, New York, 1994. MR 1281384
Reference: [5] P. Constantin: An Eulerian-Lagrangian approach to the Navier-Stokes equations.Commun. Math. Phys. 216 (2001), 663–686. Zbl 0988.76020, MR 1815721, 10.1007/s002200000349
Reference: [6] P. Constantin, C. Foiaş: Navier-Stokes Equations. Chicago Lectures in Mathematics.University of Chicago Press, Chicago, 1988. MR 0972259
Reference: [7] C. R. Doering, J. D. Gibbon: Applied Analysis of the Navier-Stokes Equations. Cambridge Texts in Applied Mathematics.Cambridge University Press, Cambridge, 1995. MR 1325465
Reference: [8] L. Escauriaza, G. Seregin, and V. Šverák: On $L_{3,\infty }$-solutions to the Navier-Stokes equations and backward uniqueness.http://www.ima.umn.edu/preprints/dec2002/dec2002.html. MR 1992563
Reference: [9] C. Foiaş, C. Guillopé, and R. Temam: New a priori estimates for Navier-Stokes equations in dimension  $3$.Commun. Partial Differ. Equations 6 (1981), 329–359. MR 0607552, 10.1080/03605308108820180
Reference: [10] Z. Grujić, I. Kukavica: Space analyticity for the Navier-Stokes and related equations with initial data in  $L^p$.J.  Funct. Anal. 152 (1998), 447–466. MR 1607936, 10.1006/jfan.1997.3167
Reference: [11] I. Karatzas, S. E. Shreve: Brownian Motion and Stochastic Calculus, second edition. Graduate Texts in Mathematics Vol.  113.Springer-Verlag, New York, 1991. MR 1121940
Reference: [12] H. Kozono, Y. Taniuchi: Bilinear estimates in  BMO and the Navier-Stokes equations.Math.  Z. 235 (2000), 173–194. MR 1785078, 10.1007/s002090000130
Reference: [13] M. A. Krasnosel’skiĭ, Ya. B. Rutitskiĭ: Convex Functions and Orlicz Spaces. Translated from the first Russian edition.P.  Noordhoff, Groningen, 1961. MR 0126722
Reference: [14] P. G. Lemarié-Rieusset: Recent Developments in the Navier-Stokes Problem.Chapman and Hall/CRC, Boca Raton, 2002. Zbl 1034.35093, MR 1938147
Reference: [15] P. G. Lemarié-Rieusset: Further remarks on the analyticity of mild solutions for the Navier-Stokes equations in  $\mathbb{R}^3$.C. R. Math. Acad. Sci. Paris 338 (2004), 443–446. (French) MR 2057722, 10.1016/j.crma.2004.01.015
Reference: [16] S. J. Montgomery-Smith, M. Pokorný: A counterexample to the smoothness of the solution to an equation arising in fluid mechanics.Comment. Math. Univ. Carolin. 43 (2002), 61–75. MR 1903307
Reference: [17] G. Prodi: Un teorema di unicità per le equazioni di Navier-Stokes.Ann. Mat. Pura Appl. 48 (1959), 173–182. (Italian) Zbl 0148.08202, MR 0126088, 10.1007/BF02410664
Reference: [18] V. Scheffer: Turbulence and Hausdorff Dimension.Turbulence and Navier-Stokes Equations (Proc. Conf., Univ. Paris-Sud, Orsay, 1975). Lect. Notes Math. Vol.  565, Springer-Verlag, Berlin, 1976, pp. 174–183. Zbl 0394.76029, MR 0452123
Reference: [19] J. Serrin: On the interior regularity of weak solutions of the Navier-Stokes equations.Arch. Ration. Mech. Anal. 9 (1962), 187–195. Zbl 0106.18302, MR 0136885, 10.1007/BF00253344
Reference: [20] H. Sohr: Zur Regularitätstheorie der instationären Gleichungen von Navier-Stokes.Math.  Z. 184 (1983), 359–375. Zbl 0506.35084, MR 0716283
Reference: [21] R. Temam: Infinite-Dimensional Dynamical Systems in Mechanics and Physics, second edition. Applied Mathematical Sciences Vol.  68.Springer-Verlag, New York, 1997. MR 1441312
.

Files

Files Size Format View
AplMat_50-2005-5_2.pdf 363.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo