Title:
|
Conditions implying regularity of the three dimensional Navier-Stokes equation (English) |
Author:
|
Montgomery-Smith, Stephen |
Language:
|
English |
Journal:
|
Applications of Mathematics |
ISSN:
|
0862-7940 (print) |
ISSN:
|
1572-9109 (online) |
Volume:
|
50 |
Issue:
|
5 |
Year:
|
2005 |
Pages:
|
451-464 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We obtain logarithmic improvements for conditions for regularity of the Navier-Stokes equation, similar to those of Prodi-Serrin or Beale-Kato-Majda. Some of the proofs make use of a stochastic approach involving Feynman-Kac-like inequalities. As part of our methods, we give a different approach to a priori estimates of Foiaş, Guillopé and Temam. (English) |
Keyword:
|
Navier-Stokes equation |
Keyword:
|
vorticity |
Keyword:
|
Prodi-Serrin condition |
Keyword:
|
Beale-Kato-Majda condition |
Keyword:
|
Orlicz norm |
Keyword:
|
stochastic method |
MSC:
|
35B65 |
MSC:
|
35Q30 |
MSC:
|
46E30 |
MSC:
|
60H10 |
MSC:
|
60H30 |
MSC:
|
76D03 |
MSC:
|
76D05 |
idZBL:
|
Zbl 1099.35086 |
idMR:
|
MR2160072 |
DOI:
|
10.1007/s10492-005-0032-0 |
. |
Date available:
|
2009-09-22T18:23:31Z |
Last updated:
|
2020-07-02 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/134617 |
. |
Reference:
|
[1] J. T. Beale, T. Kato, and A. Majda: Remarks on the breakdown of smooth solutions for the $3$-D Euler equations.Comm. Math. Phys. 94 (1984), 61–66. MR 0763762, 10.1007/BF01212349 |
Reference:
|
[2] B. Busnello, F. Flandoli, and M. Romito: A probabilistic representation for the vorticity of a 3D viscous fluid and for general systems of parabolic equations.Preprint, http://arxiv.org/abs/math/0306075. |
Reference:
|
[3] M. Cannone: Wavelets, paraproducts and Navier-Stokes.Diderot Editeur, Paris, 1995. (French) Zbl 1049.35517, MR 1688096 |
Reference:
|
[4] A. Chorin: Vorticity and Turbulence. Appl. Math. Sci., Vol. 103.Springer-Verlag, New York, 1994. MR 1281384 |
Reference:
|
[5] P. Constantin: An Eulerian-Lagrangian approach to the Navier-Stokes equations.Commun. Math. Phys. 216 (2001), 663–686. Zbl 0988.76020, MR 1815721, 10.1007/s002200000349 |
Reference:
|
[6] P. Constantin, C. Foiaş: Navier-Stokes Equations. Chicago Lectures in Mathematics.University of Chicago Press, Chicago, 1988. MR 0972259 |
Reference:
|
[7] C. R. Doering, J. D. Gibbon: Applied Analysis of the Navier-Stokes Equations. Cambridge Texts in Applied Mathematics.Cambridge University Press, Cambridge, 1995. MR 1325465 |
Reference:
|
[8] L. Escauriaza, G. Seregin, and V. Šverák: On $L_{3,\infty }$-solutions to the Navier-Stokes equations and backward uniqueness.http://www.ima.umn.edu/preprints/dec2002/dec2002.html. MR 1992563 |
Reference:
|
[9] C. Foiaş, C. Guillopé, and R. Temam: New a priori estimates for Navier-Stokes equations in dimension $3$.Commun. Partial Differ. Equations 6 (1981), 329–359. MR 0607552, 10.1080/03605308108820180 |
Reference:
|
[10] Z. Grujić, I. Kukavica: Space analyticity for the Navier-Stokes and related equations with initial data in $L^p$.J. Funct. Anal. 152 (1998), 447–466. MR 1607936, 10.1006/jfan.1997.3167 |
Reference:
|
[11] I. Karatzas, S. E. Shreve: Brownian Motion and Stochastic Calculus, second edition. Graduate Texts in Mathematics Vol. 113.Springer-Verlag, New York, 1991. MR 1121940 |
Reference:
|
[12] H. Kozono, Y. Taniuchi: Bilinear estimates in BMO and the Navier-Stokes equations.Math. Z. 235 (2000), 173–194. MR 1785078, 10.1007/s002090000130 |
Reference:
|
[13] M. A. Krasnosel’skiĭ, Ya. B. Rutitskiĭ: Convex Functions and Orlicz Spaces. Translated from the first Russian edition.P. Noordhoff, Groningen, 1961. MR 0126722 |
Reference:
|
[14] P. G. Lemarié-Rieusset: Recent Developments in the Navier-Stokes Problem.Chapman and Hall/CRC, Boca Raton, 2002. Zbl 1034.35093, MR 1938147 |
Reference:
|
[15] P. G. Lemarié-Rieusset: Further remarks on the analyticity of mild solutions for the Navier-Stokes equations in $\mathbb{R}^3$.C. R. Math. Acad. Sci. Paris 338 (2004), 443–446. (French) MR 2057722, 10.1016/j.crma.2004.01.015 |
Reference:
|
[16] S. J. Montgomery-Smith, M. Pokorný: A counterexample to the smoothness of the solution to an equation arising in fluid mechanics.Comment. Math. Univ. Carolin. 43 (2002), 61–75. MR 1903307 |
Reference:
|
[17] G. Prodi: Un teorema di unicità per le equazioni di Navier-Stokes.Ann. Mat. Pura Appl. 48 (1959), 173–182. (Italian) Zbl 0148.08202, MR 0126088, 10.1007/BF02410664 |
Reference:
|
[18] V. Scheffer: Turbulence and Hausdorff Dimension.Turbulence and Navier-Stokes Equations (Proc. Conf., Univ. Paris-Sud, Orsay, 1975). Lect. Notes Math. Vol. 565, Springer-Verlag, Berlin, 1976, pp. 174–183. Zbl 0394.76029, MR 0452123 |
Reference:
|
[19] J. Serrin: On the interior regularity of weak solutions of the Navier-Stokes equations.Arch. Ration. Mech. Anal. 9 (1962), 187–195. Zbl 0106.18302, MR 0136885, 10.1007/BF00253344 |
Reference:
|
[20] H. Sohr: Zur Regularitätstheorie der instationären Gleichungen von Navier-Stokes.Math. Z. 184 (1983), 359–375. Zbl 0506.35084, MR 0716283 |
Reference:
|
[21] R. Temam: Infinite-Dimensional Dynamical Systems in Mechanics and Physics, second edition. Applied Mathematical Sciences Vol. 68.Springer-Verlag, New York, 1997. MR 1441312 |
. |