Previous |  Up |  Next

Article

Title: On a conserved Penrose-Fife type system (English)
Author: Gilardi, Gianni
Author: Marson, Andrea
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 50
Issue: 5
Year: 2005
Pages: 465-499
Summary lang: English
.
Category: math
.
Summary: We deal with a class of Penrose-Fife type phase field models for phase transitions, where the phase dynamics is ruled by a Cahn-Hilliard type equation. Suitable assumptions on the behaviour of the heat flux as the absolute temperature tends to zero and to $+\infty $ are considered. An existence result is obtained by a double approximation procedure and compactness methods. Moreover, uniqueness and regularity results are proved as well. (English)
Keyword: Penrose-Fife model
Keyword: Cahn-Hilliard equation
Keyword: heat flux law
MSC: 35B45
MSC: 35D05
MSC: 35G30
MSC: 35K60
MSC: 80A22
idZBL: Zbl 1099.35022
idMR: MR2160073
DOI: 10.1007/s10492-005-0033-z
.
Date available: 2009-09-22T18:23:38Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134618
.
Reference: [1] H. W.  Alt, I.  Pawlow: A mathematical model of dynamics of non-isothermal phase separation.Physica D 59 (1992), 389–416. MR 1192751
Reference: [2] V.  Barbu: Nonlinear Semigroups and Differential Equations in Banach Spaces.Noordhoff, Leyden, 1976. Zbl 0328.47035, MR 0390843
Reference: [3] H.  Brezis: Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert.North-Holland Math. Stud. Vol.  5 North-Holland, Amsterdam, 1973. Zbl 0252.47055, MR 0348562
Reference: [4] M.  Brokate, J.  Sprekels: Hysteresis and Phase Transitions. Appl. Math. Sci. Vol. 121.Springer-Verlag, New York, 1996. MR 1411908, 10.1007/978-1-4612-4048-8_5
Reference: [5] J. W.  Cahn, J.  Hilliard: Free energy of a nonuniform system. I.  Interfacial free energy.J.  Chem. Phys. 28 (1958), 258–267. 10.1063/1.1744102
Reference: [6] P.  Colli, G.  Gilardi, M.  Grasselli, and G.  Schimperna: The conserved phase-field system with memory.Adv. Math. Sci. Appl. 11 (2001), 265–291. MR 1841569
Reference: [7] P.  Colli, G.  Gilardi, E.  Rocca, and G.  Schimperna: On a Penrose-Fife phase field model with inhomogeneous Neumann boundary conditions for the temperature.Differ. Integral Equ. 17 (2004), 511–534. MR 2054932
Reference: [8] P.  Colli, Ph.  Laurençot: Weak solutions to the Penrose-Fife phase field model for a class of admissible flux laws.Physica D 111 (1998), 311–334. MR 1601442
Reference: [9] P.  Colli, Ph.  Laurençot, and J.  Sprekels: Global solution to the Penrose-Fife phase field model with special heat flux laws.In: Variations of Domains and Free-Boundary Problems in Solid Mechanics. Solid Mech. Appl.  66, P. Argoul, M. Frémond, Q. S. Nguyen (eds.), Kluwer Acad. Publ., Dordrecht, 1999, pp. 181–188. MR 1672241
Reference: [10] P.  Colli, J.  Sprekels: On a Penrose-Fife model with zero interfacial energy leading to a phase-field system of relaxed Stefan type.Ann. Mat. Pura Appl. IV.  Ser. 169 (1995), 269–289. MR 1378478, 10.1007/BF01759357
Reference: [11] G.  Gilardi, A.  Marson: On a Penrose-Fife type system with Dirichlet boundary conditions for the temperature.Math. Methods Appl. Sci. 26 (2003), 1303–1325. MR 2004103, 10.1002/mma.423
Reference: [12] W.  Horn, Ph.  Laurençot, and J.  Sprekels: Global solutions to a Penrose-Fife phase-field model under flux boundary conditions for the inverse temperature.Math. Methods Appl. Sci. 19 (1996), 1053–1072. MR 1402815, 10.1002/(SICI)1099-1476(19960910)19:13<1053::AID-MMA809>3.0.CO;2-S
Reference: [13] W.  Horn, J. Sprekels, and S.  Zheng: Global existence of smooth solution to the Penrose-Fife model for Ising ferromagnets.Adv. Math. Sci. Appl. 6 (1996), 227–241. MR 1385769
Reference: [14] A.  Ito, N.  Kenmochi, and M.  Kubo: Non-isothermal phase transition models with Neumann boundary conditions.Nonlinear Anal. Theory Methods Appl. 53A (2003), 977-996. MR 1978030
Reference: [15] N.  Kenmochi: Uniqueness of the solution to a nonlinear system arising in phase transition.Proceedings of the Conference Nonlinear Analysis and Applications (Warsaw, 1994). GAKUTO Intern. Ser. Math. Sci. Apl. Vol. 7, N.  Kenmochi (ed.), 1995, pp. 261–271. Zbl 0873.35040, MR 1422940
Reference: [16] N.  Kenmochi, M.  Kubo: Weak solutions of nonlinear systems for non-isothermal phase transitions.Adv. Math. Sci. Appl. 9 (1999), 499–521. MR 1690439
Reference: [17] N.  Kenmochi, M.  Niezgódka: Evolution equations of nonlinear variational inequalities arising from phase change problems.Nonlinear Anal. Theory Methods Appl. 22 (1994), 1163–1180. MR 1279139
Reference: [18] N.  Kenmochi, M. Niezgódka: Viscosity approach to modelling non-isothermal diffusive phase separation.Japan J.  Ind. Appl. Math. 13 (1996), 135–169. MR 1377464, 10.1007/BF03167303
Reference: [19] Ph.  Laurençot: Solutions to a Penrose-Fife model of phase field type.J.  Math. Anal. Appl. 185 (1994), 262–274. MR 1283056, 10.1006/jmaa.1994.1247
Reference: [20] Ph.  Laurençot: Weak solutions to a Penrose-Fife model for phase transitions.Adv. Math. Sci. Appl. 5 (1995), 117–138. MR 1325962
Reference: [21] Ph.  Laurençot: Weak solutions to a Penrose-Fife model with Fourier law for the temperature.J.  Math. Anal. Appl. 219 (1998), 331–343. MR 1606330, 10.1006/jmaa.1997.5813
Reference: [22] J.-L.  Lions: Quelques méthodes de résolution des problèmes aux limites non linéaires.Dunod, Gauthier-Villars, Paris, 1969. Zbl 0189.40603, MR 0259693
Reference: [23] J.  Nečas: Les méthodes directes en théorie des équations elliptiques.Masson, Paris, 1967. MR 0227584
Reference: [24] O.  Penrose: Statistical Mechanics and the kinetics of phase separation.In: Material Instabilities in Continuum Mechanics, J.  Ball (ed.), Oxford University Press, Oxford, 1988, pp. 373–394. MR 0970534
Reference: [25] O.  Penrose, P. C.  Fife: Thermodynamically consistent models of phase-field type for the kinetics of phase transitions.Physica  D 43 (1990), 44–62. MR 1060043, 10.1016/0167-2789(90)90015-H
Reference: [26] O.  Penrose, P. C.  Fife: On the relation between the standard phase-field model and a “thermodynamically consistent” phase-field model.Physica  D 69 (1993), 107–113. MR 1245658, 10.1016/0167-2789(93)90183-2
Reference: [27] E.  Rocca: The conserved Penrose-Fife system with temperature-dependent memory.J. Math. Anal. Appl. 287 (2003 2002), 177–199. MR 2010264, 10.1016/S0022-247X(03)00541-9
Reference: [28] E.  Rocca, G.  Schimperna: The conserved Penrose-Fife system with Fourier heat flux law.Nonlinear Anal. Theory Methods Appl. 53A (2003), 1089–1100. MR 1978036
Reference: [29] W.  Shen, S.  Zheng: On the coupled Cahn-Hilliard equations.Commun. Partial Differ. Equations 18 (1993), 701–727. MR 1214877, 10.1080/03605309308820946
Reference: [30] J.  Sprekels, S.  Zheng: Global smooth solutions to a thermodynamically consistent model of phase-field type in higher space dimensions.J.  Math. Anal. Appl. 176 (1993), 200–223. MR 1222165, 10.1006/jmaa.1993.1209
Reference: [31] H. E.  Stanley: Introduction to Phase Transitions and Critical Phenomena.Oxford University Press, Oxford, 1987.
.

Files

Files Size Format View
AplMat_50-2005-5_3.pdf 459.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo