Previous |  Up |  Next

Article

Title: Instability of oscillations in cable-stayed bridges (English)
Author: Malík, Josef
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 50
Issue: 6
Year: 2005
Pages: 503-525
Summary lang: English
.
Category: math
.
Summary: In this paper the stability of two basic types of cable stayed bridges, suspended by one or two rows of cables, is studied. Two linearized models of the center span describing the vertical and torsional oscillations are investigated. After the analysis of these models, a stability criterion is formulated. The criterion expresses a relation between the eigenvalues of the vertical and torsional oscillations of the center span. The continuous dependence of the eigenvalues on some data is studied and a stability problem for the center span is formulated. The existence of a solution to the stability problem is proved. Some other qualitative results concerning the stability/instability of oscillations are studied as well. (English)
Keyword: cable stayed bridge
Keyword: vertical and torsional oscillations
Keyword: eigenvalues and eigenfunctions of center span
MSC: 35B27
MSC: 35P10
MSC: 35Q72
MSC: 35Q80
idZBL: Zbl 1099.35152
idMR: MR2181023
DOI: 10.1007/s10492-005-0034-y
.
Date available: 2009-09-22T18:23:51Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134620
.
Reference: [1] N. U.  Ahmed, H.  Harbi: Mathematical analysis of dynamic models of suspension bridges.SIAM J.  Appl. Math. 58 (1998), 853–874. MR 1616611, 10.1137/S0036139996308698
Reference: [2] J.  Berkovits, P.  Drábek, H.  Leinfelder, V.  Mustonen, and G.  Tajčová: Time-periodic oscillations in suspension bridges: Existence of unique solution.Nonlinear Anal., Real World Appl. 1 (2000), 345–362. MR 1791531
Reference: [3] P.  Drábek, H.  Leinfelder, G. Tajčová: Coupled string-beam equations as a model of suspension bridges.Appl. Math. 44 (1999), 97–142. MR 1667633, 10.1023/A:1022257304738
Reference: [4] A.  Fonda, Z.  Schneider, and F.  Zanolin: Periodic oscillations for a nonlinear suspension bridge model.J.  Comput. Appl. Math. 52 (1994), 113–140. MR 1310126, 10.1016/0377-0427(94)90352-2
Reference: [5] J.  Glover, A. C.  Lazer, and P. J.  McKenna: Existence and stability of large-scale nonlinear oscillations in suspension bridges.Z. Angew. Math. Phys. 40 (1989), 171–200. MR 0990626, 10.1007/BF00944997
Reference: [6] A.  Kufner, O.  John, S. Fučík: Functional spaces.Academia, Prague, 1977.
Reference: [7] A. C.  Lazer, P. J.  McKenna: Large scale oscillatory behaviour in loaded asymmetric systems.Ann. Inst. Henri Poincaré, Anal. Non Linéaire 4 (1987), 243–274. MR 0898049, 10.1016/S0294-1449(16)30368-7
Reference: [8] A. C.  Lazer, P. J.  McKenna: Large-amplitude periodic oscillations in suspension bridges: some new connections with nonlinear analysis.SIAM Rev. 32 (1990), 537–578. MR 1084570, 10.1137/1032120
Reference: [9] A. C.  Lazer, P. J.  McKenna: Existence, uniqueness, and stability of oscillations in differential equations with asymmetric nonlinearities.Trans. Am. Math. Soc. 315 (1989), 721–739. MR 0979963, 10.1090/S0002-9947-1989-0979963-1
Reference: [10] P. J.  McKenna, W.  Walter: Nonlinear oscillations in a suspension bridge.Arch. Rational Mech. Anal. 98 (1987), 167–190. MR 0866720, 10.1007/BF00251232
Reference: [11] P. J.  McKenna, W.  Walter: Travelling waves in a suspension bridge.SIAM J.  Appl. Math. 50 (1990), 703–715. MR 1050908, 10.1137/0150041
Reference: [12] J.  Malík: Oscillations in cable stayed bridges: existence, uniqueness, homogenization of cable systems.J.  Math. Anal. Appl. 226 (2002), 100–126. MR 1876772, 10.1006/jmaa.2001.7713
Reference: [13] J.  Malík: Mathematical modelling of cable stayed bridges: existence, uniqueness, homogenization of cable systems.Appl. Math. 49 (2004), 1–38. MR 2032146, 10.1023/B:APOM.0000024518.38660.a3
Reference: [14] E.  Simiu, R. H.  Scanlan: Wind Effects on Structures: An Introduction to Wind Engineering.John Wiley, New York, 1978.
Reference: [15] S. L.  Sobolev: Applications of Functional Analysis in Mathematical Physics.American Mathematical Society, Providence, 1963. Zbl 0123.09003, MR 0165337
Reference: [16] G. Tajčová: Mathematical models of suspension bridges.Appl. Math. 42 (1997), 451–480. MR 1475052, 10.1023/A:1022255113612
Reference: [17] V. S.  Vladimirov: Equations of Mathematical Physics.Mir, Moscow, 1987. (Italian) Zbl 0699.35005, MR 1018346
Reference: [18] R.  Walther, B.  Houriet, W.  Isler, P.  Moïa, and J. F. Klein: Cable Stayed Bridges.Thomas Telford, London, 1999.
Reference: [19] K.  Yosida: Functional Analysis.Springer-Verlag, Berlin-Götingen-Heidelberg, 1965. Zbl 0126.11504
.

Files

Files Size Format View
AplMat_50-2005-6_1.pdf 394.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo