Previous |  Up |  Next

Article

Title: A uniqueness result for a model for mixtures in the absence of external forces and interaction momentum (English)
Author: Frehse, Jens
Author: Goj, Sonja
Author: Málek, Josef
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 50
Issue: 6
Year: 2005
Pages: 527-541
Summary lang: English
.
Category: math
.
Summary: We consider a continuum model describing steady flows of a miscible mixture of two fluids. The densities $\rho _i$ of the fluids and their velocity fields $u^{(i)}$ are prescribed at infinity: $\rho _i|_{\infty } = \rho _{i \infty } > 0$, $u^{(i)}|_{\infty } = 0$. Neglecting the convective terms, we have proved earlier that weak solutions to such a reduced system exist. Here we establish a uniqueness type result: in the absence of the external forces and interaction terms, there is only one such solution, namely $\rho _i \equiv \rho _{i \infty }$, $u^{(i)} \equiv 0$, $i=1,2$. (English)
Keyword: miscible mixture
Keyword: compressible fluid
Keyword: uniqueness
Keyword: zero force
MSC: 35D05
MSC: 35Q30
MSC: 35Q35
MSC: 76D03
MSC: 76D07
MSC: 76N10
MSC: 76T99
idZBL: Zbl 1099.35079
idMR: MR2181024
DOI: 10.1007/s10492-005-0035-x
.
Date available: 2009-09-22T18:23:58Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134621
.
Reference: [1] R. J. DiPerna, P.-L.  Lions: Ordinary differential equations, transport theory and Sobolev spaces.Invent. Math. 98 (1989), 511–547. MR 1022305, 10.1007/BF01393835
Reference: [2] R. Erban: On the static-limit solutions to the Navier-Stokes equations of compressible flow.J.  Math. Fluid Mech. 3 (2001), 393–408. Zbl 1007.35054, MR 1867888, 10.1007/PL00000977
Reference: [3] E. Feireisl: On compactness of solutions to the compressible isentropic Navier-Stokes equations when the density is not square integrable.Commentat. Math. Univ. Carol. 42 (2001), 83–98. Zbl 1115.35096, MR 1825374
Reference: [4] E. Feireisl: Dynamics of Viscous Compressible Fluids.Oxford University Press, New York, 2004. Zbl 1080.76001, MR 2040667
Reference: [5] E. Feireisl, H.  Petzeltová: On the zero-velocity-limit solutions to the Navier-Stokes equations of compressible flow.Manuscr. Math. 97 (1998), 109–116. MR 1642646, 10.1007/s002290050089
Reference: [6] J. Frehse, S.  Goj, and J. Málek: A Stokes-like system for mixtures.In: Nonlinear Problems in Mathematical Physics and Related Topics  II. International Mathematical Series, M. Sh.  Birman, S.  Hildebrandt, V. A.  Solonnikov, and N. N.  Uraltseva (eds.), Kluwer, New York, 2002, pp. 119–136. MR 1971993
Reference: [7] J. Frehse, S.  Goj, and J. Málek: Existence of solutions to a Stokes-like system for mixtures.SIAM J.  Math. Anal. 36 (2005), 1259–1281. MR 2139449
Reference: [8] A. E. Green, P. M.  Naghdi: A dynamical theory of interacting continua.Internat. J.  Engrg. Sci. 3 (1965), 231–241. MR 0186267, 10.1016/0020-7225(65)90046-7
Reference: [9] A. E. Green, P. M.  Naghdi: A unified procedure for construction of theories of deformable media. III.  Mixtures of interacting continua.Proc. Roy. Soc. London Ser.  A  448 (1995), 379–388. MR 1327687
Reference: [10] J. G. Heywood, M.  Padula: On the existence and uniqueness theory for steady compressible viscous flow.In: Fundamental Directions in Mathematical Fluid Mechanics, G. P. Galdi et al. (eds.), Birkhäuser-Verlag, Basel, 2000, pp. 171–189. MR 1799398
Reference: [11] P.-L. Lions: Mathematical Topics in Fluid Mechanics. Vol.  2: Compressible Models.Oxford University Press, New York, 1998. Zbl 0908.76004, MR 1637634
Reference: [12] A. Novotný: Compactness of steady compressible isentropic Navier-Stokes equations via the decomposition method (the whole 3-D space).In: Theory of the Navier-Stokes Equations, J. G. Heywood et al. (eds.), World Sci. Publishing, River Edge, 1998, pp. 106–120. Zbl 0934.76079, MR 1643029
Reference: [13] K. R. Rajagopal, L.  Tao: Mechanics of Mixtures.World Scientific Publishing, River Edge, 1995. MR 1370661
Reference: [14] C. Truesdell: Mechanical basis of diffusion.J.  Chemical Physics 37 (1962), 2337.
.

Files

Files Size Format View
AplMat_50-2005-6_2.pdf 366.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo