Previous |  Up |  Next

Article

Title: From scalar to vector optimization (English)
Author: Ginchev, Ivan
Author: Guerraggio, Angelo
Author: Rocca, Matteo
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 51
Issue: 1
Year: 2006
Pages: 5-36
Summary lang: English
.
Category: math
.
Summary: Initially, second-order necessary optimality conditions and sufficient optimality conditions in terms of Hadamard type derivatives for the unconstrained scalar optimization problem $\phi (x)\rightarrow \min $, $x\in \mathbb{R}^m$, are given. These conditions work with arbitrary functions $\phi \:\mathbb{R}^m \rightarrow \overline{\mathbb{R}}$, but they show inconsistency with the classical derivatives. This is a base to pose the question whether the formulated optimality conditions remain true when the “inconsistent” Hadamard derivatives are replaced with the “consistent” Dini derivatives. It is shown that the answer is affirmative if $\phi $ is of class ${\mathcal C}^{1,1}$ (i.e., differentiable with locally Lipschitz derivative). Further, considering ${\mathcal C}^{1,1}$ functions, the discussion is raised to unconstrained vector optimization problems. Using the so called “oriented distance” from a point to a set, we generalize to an arbitrary ordering cone some second-order necessary conditions and sufficient conditions given by Liu, Neittaanmäki, Křížek for a polyhedral cone. Furthermore, we show that the conditions obtained are sufficient not only for efficiency but also for strict efficiency. (English)
Keyword: scalar and vector optimization
Keyword: ${\mathcal C}^{1,1}$ functions
Keyword: Hadamard and Dini derivatives
Keyword: second-order optimality conditions
Keyword: Lagrange multipliers.
MSC: 49J52
MSC: 90C29
MSC: 90C30
idZBL: Zbl 1164.90399
idMR: MR2197320
DOI: 10.1007/s10492-006-0002-1
.
Date available: 2009-09-22T18:24:32Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134627
.
Reference: [1] B.  Aghezzaf: Second-order necessary conditions of the Kuhn-Tucker type in multiobjective programming problems.Control Cybern. 28 (1999), 213–224. Zbl 0946.90075, MR 1752558
Reference: [2] V.  M.  Alekseev, V.  M.  Tikhomirov, S.  V.  Fomin: Optimal Control.Consultants Bureau, New York, 1987 (Russian original: Optimal’noe upravlenie. Publ. Nauka, Moscow, 1979). MR 0924574
Reference: [3] T.  Amahroq, A.  Taa: On Lagrange-Kuhn-Tucker multipliers for multiobjective optimization problems.Optimization 41 (1997), 159–172. MR 1459915, 10.1080/02331939708844332
Reference: [4] A.  Auslender: Stability in mathematical programming with nondifferentiable data.SIAM J.  Control Optimization 22 (1984), 239–254. Zbl 0538.49020, MR 0732426, 10.1137/0322017
Reference: [5] E.  Bednarczuk, W.  Song: PC points and their application to vector optimization.PLISKA, Stud. Math. Bulg. 12 (1998), 21–30. MR 1686508
Reference: [6] S.  Bolintinéanu, M.  El  Maghri: Second-order efficiency conditions and sensitivity of efficient points.J.  Optimization Theory Appl. 98 (1998), 569–592. MR 1640141, 10.1023/A:1022619928631
Reference: [7] M.  Ciligot-Travain: On Lagrange-Kuhn-Tucker multipliers for Pareto optimization problems.Numer. Funct. Anal. Optimization 15 (1994), 689–693. MR 1281568, 10.1080/01630569408816587
Reference: [8] G. P.  Crespi, I.  Ginchev, M.  Rocca: Minty variational inequality, efficiency and proper efficiency.Vietnam J.  Math. 32 (2004), 95–107. MR 2052725
Reference: [9] V.  F.  Demyanov, A.  M.  Rubinov: Constructive Nonsmooth Analysis.Peter Lang, Frankfurt am Main, 1995. MR 1325923
Reference: [10] I.  Ginchev:: Higher order optimality conditions in nonsmooth optimization.Optimization 51 (2002), 47–72. Zbl 1011.49014, MR 1926300, 10.1080/02331930211986
Reference: [11] I.  Ginchev, A.  Guerraggio, M.  Rocca: Equivalence on $(n+1)$-th order Peano and usual derivatives for $n$-convex functions.Real Anal. Exch. 25 (2000), 513–520. MR 1779334
Reference: [12] I.  Ginchev, A.  Guerraggio, M.  Rocca: On second-order conditions in vector optimization.Preprint 2002/32, Universitá dell’Insubria, Facoltà di Economia, Varese 2002, http://eco.uninsubria.it/dipeco/Quaderni/files/QF2002_32.pdf.
Reference: [13] I.  Ginchev, A.  Guerraggio, M.  Rocca: First-order conditions for $C^{0,1}$  constrained vector optimization.In: Variational Analysis and Applications, F. Giannessi, A.  Maugeri (eds.), Springer-Verlag, New York, 2005, pp. 427–450. MR 2159985
Reference: [14] I.  Ginchev, A.  Hoffmann: Approximation of set-valued functions by single-valued one.Discuss. Math., Differ. Incl., Control Optim. 22 (2002), 33–66. MR 1961115, 10.7151/dmdico.1031
Reference: [15] A.  Guerraggio, D. T.  Luc: Optimality conditions for $C^{1,1}$ vector optimization problems.J.  Optimization Theory Appl. 109 (2001), 615–629. MR 1835076, 10.1023/A:1017519922669
Reference: [16] J.-B.  Hiriart-Urruty, J.-J.  Strodiot, V.  Hien Nguen: Generalized Hessian matrix and second order optimality conditions for problems with $C^{1,1}$  data.Appl. Math. Optimization 11 (1984), 43–56. MR 0726975, 10.1007/BF01442169
Reference: [17] J.-B.  Hiriart-Urruty: New concepts in nondifferentiable programming.Analyse non convexe, Bull. Soc. Math. France 60 (1979), 57–85. Zbl 0469.90071, MR 0562256
Reference: [18] J.-B.  Hiriart-Urruty: Tangent cones, generalized gradients and mathematical programming in Banach spaces.Math. Oper. Res. 4 (1979), 79–97. Zbl 0409.90086, MR 0543611, 10.1287/moor.4.1.79
Reference: [19] D.  Klatte, K.  Tammer: On second order sufficient optimality conditions for $C^{1,1}$-optimization problems.Optimization 19 (1988), 169–179. MR 0948388, 10.1080/02331938808843333
Reference: [20] L.  Liu: The second-order conditions of nondominated solutions for $C^{1,1}$  generalized multiobjective mathematical programming.Syst. Sci. Math. Sci. 4 (1991), 128–138. MR 1119288
Reference: [21] L.  Liu, M.  Křížek: The second order optimality conditions for nonlinear mathematical programming with $C^{1,1}$  data.Appl. Math. 42 (1997), 311–320. MR 1453935, 10.1023/A:1023068513188
Reference: [22] L.  Liu, P.  Neittaanmäki, M.  Křížek: Second-order optimality conditions for nondominated solutions of multiobjective programming with $C^{1,1}$  data.Appl. Math. 45 (2000), 381–397. MR 1777017, 10.1023/A:1022272728208
Reference: [23] D. T.  Luc: Theory of Vector Optimization.Springer Verlag, Berlin, 1988. Zbl 0654.90082
Reference: [24] D. T.  Luc: Taylor’s formula for $C^{k,1}$  functions.SIAM J.  Optim. 5 (1995), 659–669. MR 1344674, 10.1137/0805032
Reference: [25] E.  Miglierina: Characterization of solutions of multiobjective optimization problems.Rendiconti Circ. Mat. Palermo 50 (2001), 153–164. MR 1825676, 10.1007/BF02843924
Reference: [26] E.  Miglierina, E.  Molho: Scalarization and stability in vector optimization.J.  Optimization Theory Appl. 114 (2002), 657–670. MR 1921171, 10.1023/A:1016031214488
Reference: [27] G.  Peano: Sulla formola di Taylor.Atti Accad. Sci. Torino 27 (1891), 40-46.
Reference: [28] R. T.  Rockafellar: Convex Analysis.Princeton University Press, Princeton, 1970. Zbl 0193.18401, MR 0274683
Reference: [29] X. Yang: Second-order conditions in $C^{1,1}$ optimization with applications.Numer. Funct. Anal. Optimization 14 (1993), 621–632. MR 1248132, 10.1080/01630569308816543
Reference: [30] X. Q.  Yang: Generalized second-order derivatives and optimality conditions.Nonlinear Anal. 23 (1994), 767–784. Zbl 0816.49008, MR 1298568, 10.1016/0362-546X(94)90218-6
Reference: [31] X. Q.  Yang, V.  Jeyakumar: Generalized second-order directional derivatives and optimization with $C^{1,1}$  functions.Optimization 26 (1992), 165–185. MR 1236606, 10.1080/02331939208843851
Reference: [32] A.  Zaffaroni: Degrees of efficiency and degrees of minimality.SIAM J. Control Optimization 42 (2003), 1071–1086. Zbl 1046.90084, MR 2002149, 10.1137/S0363012902411532
Reference: [33] C.  Zalinescu: On two notions of proper efficiency.In: Optimization in Mathematical Physics, Pap. 11th Conf. Methods Techniques Math. Phys., Oberwolfach, Brokowski and Martensen (eds.), Peter Lang, Frankfurt am Main, 1987. Zbl 0618.90089, MR 1036535
.

Files

Files Size Format View
AplMat_51-2006-1_2.pdf 490.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo