Previous |  Up |  Next

Article

Title: Approximation of the Stieltjes integral and applications in numerical integration (English)
Author: Cerone, Pietro
Author: Dragomir, Sever S.
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 51
Issue: 1
Year: 2006
Pages: 37-47
Summary lang: English
.
Category: math
.
Summary: Some inequalities for the Stieltjes integral and applications in numerical integration are given. The Stieltjes integral is approximated by the product of the divided difference of the integrator and the Lebesgue integral of the integrand. Bounds on the approximation error are provided. Applications to the Fourier Sine and Cosine transforms on finite intervals are mentioned as well. (English)
Keyword: Stieltjes integral
Keyword: quadrature rule
Keyword: Fourier Sine transform
Keyword: Fourier Cosine transform
MSC: 26D15
MSC: 41A55
MSC: 65D30
idZBL: Zbl 1164.26341
idMR: MR2197321
DOI: 10.1007/s10492-006-0003-0
.
Date available: 2009-09-22T18:24:38Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134628
.
Reference: [1] P.  Cerone, S. S.  Dragomir: Midpoint-type rules from an inequalities point of view.In: Handbook of Analytic-Computational Methods in Applied Mathematics, G. A.  Anastassiou (ed.), CRC Press, 2000, pp. 135–200. MR 1769925
Reference: [2] P.  Cerone, S. S.  Dragomir: New bounds for the three-point rule involving the Riemann-Stieltjes integral.In: Advances in Statistics, Combinatorics and Related Areas, C.  Gulati et al. (eds.), World Scientific, London, 2002, pp. 53–62. MR 2063836
Reference: [3] P.  Cerone, S. S.  Dragomir: Approximation of the Stieltjes integral and applications in numerical integration.RGMIA Res. Rep. Coll. 6 (2003), Article 10 [Online: http://rgmia.vu.edu.au/v6n1.html].
Reference: [4] S. S.  Dragomir: On the Ostrowski’s integral inequality for mappings with bounded variation and applications.Math. Inequal. Appl. 4 (2001), 59–66. Zbl 1016.26017, MR 1809841
Reference: [5] S. S.  Dragomir, I.  Fedotov: An inequality of Grüss’ type for Riemann-Stieltjes integral and applications for special means.Tamkang J.  Math. 29 (1998), 286–292. MR 1648534
Reference: [6] S. S.  Dragomir, I.  Fedotov: A Grüss type inequality for mappings of bounded variation and applications to numerical analysis.Nonlinear Funct. Anal. Appl. 6 (2001), 425–438. MR 1875552
Reference: [7] S. S.  Dragomir, A.  Kalam: An approximation of the Fourier Sine transform via Grüss type inequalities and applications for electrical circuits.J.  KSIAM 6 (2002), 33–45.
Reference: [8] : Ostrowski Type Inequalities and Applications in Numerical Integration.S. S.  Dragomir, Th. M.  Rassias (eds.), Kluwer Academic Publishers, Dordrecht-Boston-London, 2002. Zbl 0992.26002, MR 1928290
Reference: [9] I. N.  Sneddon: Fourier Transforms.McGraw-Hill, New York-Toronto-London, 1987. MR 0041963
.

Files

Files Size Format View
AplMat_51-2006-1_3.pdf 310.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo