Previous |  Up |  Next

Article

Title: Approximation of an eigenvalue problem associated with the Stokes problem by the stream function-vorticity-pressure method (English)
Author: Chen, Wei
Author: Lin, Qun
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 51
Issue: 1
Year: 2006
Pages: 73-88
Summary lang: English
.
Category: math
.
Summary: By means of eigenvalue error expansion and integral expansion techniques, we propose and analyze the stream function-vorticity-pressure method for the eigenvalue problem associated with the Stokes equations on the unit square. We obtain an optimal order of convergence for eigenvalues and eigenfuctions. Furthermore, for the bilinear finite element space, we derive asymptotic expansions of the eigenvalue error, an efficient extrapolation and an a posteriori error estimate for the eigenvalue. Finally, numerical experiments are reported. (English)
Keyword: eigenvalue problem
Keyword: Stokes problem
Keyword: stream function-vorticity-pressure method
Keyword: asymptotic expansion
Keyword: extrapolation
Keyword: a posteriori error estimates
MSC: 35Q30
MSC: 65N25
MSC: 65N30
MSC: 76D07
idZBL: Zbl 1164.65489
idMR: MR2197324
DOI: 10.1007/s10492-006-0006-x
.
Date available: 2009-09-22T18:24:57Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134631
.
Reference: [1] I.  Babuška, J.  Osborn: Eigenvalue problems.Handbook of Numerical Analysis, Vol. II, Finite Element Method (Part  I), P. G.  Ciarlet, J. L.  Lions (eds.), North-Holland Publ., Amsterdam, 1991, pp. 641–787. MR 1115240
Reference: [2] M.  Bercovier, O.  Pironneau: Error estimates for finite element method solution of the Stokes problem in the primitive variables.Numer. Math. 33 (1979), 211–224. MR 0549450, 10.1007/BF01399555
Reference: [3] P. E. Bjørstad, B. P.  Tjøstheim: High precision solutions of two fourth order eigenvalue problems.Computing 63 (1999), 97–107. MR 1736662, 10.1007/s006070050053
Reference: [4] D.  Boffi, F.  Brezzi, and L.  Gastaldi: On the problem of spurious eigenvalues in the approximation of linear elliptic problems in mixed form.Math. Comput. 69 (2000), 121–140. MR 1642801, 10.1090/S0025-5718-99-01072-8
Reference: [5] D.  Boffi, F.  Brezzi, and L.  Gastaldi: On the convergence of eigenvalues for mixed formulations.Ann. Sc. Norm. Super. Pisa, Cl. Sci. 25 (1997), 131–154. MR 1655512
Reference: [6] F.  Brezzi, M.  Fortin: Mixed and Hybrid Finite Element Methods. Springer Series in Computational Mathematics Vol.  15.Springer-Verlag, New York, 1991. MR 1115205
Reference: [7] B. M.  Brown, E. B.  Davies, P. K.  Jimack, and M. D. Mihajlović: A numerical investigation of the solution of a class of fourth-order eigenvalue problems.Proc. R. Soc. Lond. A  456 (2000), 1505–1521. MR 1808762, 10.1098/rspa.2000.0573
Reference: [8] P. G.  Ciarlet: The Finite Element Method for Elliptic Problems.North-Holland Publ., Amsterdam, 1978. Zbl 0383.65058, MR 0520174
Reference: [9] P. G.  Ciarlet, P.-A.  Raviart: A mixed finite element method for the biharmonic equation.Aspects finite Elem. partial Differ. Equat., Proc. Symp. Madison, C.  de  Boor (ed.), Academic Press, New York, 1974, pp. 125–145. MR 0657977
Reference: [10] V.  Girault, P.-A.  Raviart: Finite Element Methods for Navier-Stokes Equations. Theory and Algorithms.Springer-Verlag, Berlin, 1986. MR 0851383
Reference: [11] R.  Glowinski, O.  Pironneau: On a mixed finite element approximation of the Stokes problem. I: Convergence of the approximate solution.Numer. Math. 33 (1979), 397–424. MR 0553350, 10.1007/BF01399323
Reference: [12] V.  Heuveline, R.  Rannacher: A posteriori error control for finite element approximations of elliptic eigenvalue problems.Adv. Comput. Math. 15 (2001), 107–138. MR 1887731, 10.1023/A:1014291224961
Reference: [13] Q.  Hu, J.  Zou: Two new variants of nonlinear inexact Uzawa algorithms for saddle-point problems.Numer. Math. 93 (2002), 333–359. MR 1941400, 10.1007/s002110100386
Reference: [14] K.  Ishihara: A mixed finite element method for the biharmonic eigenvalue problem of plate bending.Publ. Res. Inst. Math. Sci. Kyoto Univ. 14 (1978), 399–414. MR 0509196, 10.2977/prims/1195189071
Reference: [15] M.  Křížek: Comforming finite element approximation of the Stokes problem.Banach Cent. Publ. 24 (1990), 389–396. 10.4064/-24-1-389-396
Reference: [16] M.  Křížek, P.  Neittaanmäki: On superconvergence techniques.Acta Appl. Math. 9 (1987), 175–198. MR 0900263, 10.1007/BF00047538
Reference: [17] Q.  Lin, J.  Lin: Finite Element Methods: Accuracy and Improvement.China Sci. Tech. Press, Beijing, 2005.
Reference: [18] Q.  Lin, T.  Lu: Asymptotic expansions for finite element eigenvalues and finite element solution.Bonn Math. Schr. 158 (1984), 1–10. Zbl 0549.65072, MR 0793412
Reference: [19] Q.  Lin, N.  Yan: High Efficiency FEM Construction and Analysis.Hebei Univ. Press, , 1996.
Reference: [20] B.  Mercier, J.  Osborn, J.  Rappaz, and P.-A.  Raviart: Eigenvalue approximation by mixed and hybrid methods.Math. Comput. 36 (1981), 427–453. MR 0606505, 10.1090/S0025-5718-1981-0606505-9
Reference: [21] J.  Osborn: Spectral approximation for compact operators.Math. Comput. 29 (1975), 712–725. Zbl 0315.35068, MR 0383117, 10.1090/S0025-5718-1975-0383117-3
Reference: [22] J.  Osborn: Approximation of the eigenvalue of a nonselfadjoint operator arising in the study of the stability of stationary solutions of the Navier-Stokes equations.SIAM J. Numer. Anal. 13 (1976), 185–197. Zbl 0334.76010, MR 0447842, 10.1137/0713019
Reference: [23] R.  Rannacher, S.  Turek: Simple noncomforming quadrilateral Stokes element.Numer. Methods Partial Differ. Equations 8 (1992), 97–111. MR 1148797, 10.1002/num.1690080202
Reference: [24] R.  Rannacher: Noncomforming finite element methods for eigenvalue problems in linear plate theory.Numer. Math. 33 (1979), 23–42. MR 0545740, 10.1007/BF01396493
Reference: [25] R.  Stenberg: Postprocess schemes for some mixed finite elements.RAIRO Modélisation Math. Anal. Numér. 25 (1991), 151–168. MR 1086845, 10.1051/m2an/1991250101511
Reference: [26] R.  Verfürth: Error estimates for a mixed finite element approximation of the Stokes equations.RAIRO, Anal. Numér. 18 (1984), 175–182. 10.1051/m2an/1984180201751
Reference: [27] J.  Wang, X.  Ye: Superconvergence of finite element approximations for the Stokes problem by the projection methods.SIAM J.  Numer. Anal. 39 (2001), 1001–1013. MR 1860454, 10.1137/S003614290037589X
Reference: [28] C.  Wieners: Bounds for the $N$ lowest eigenvalues of fourth-order boundary value problems.Computing 59 (1997), 29–41. Zbl 0883.65082, MR 1465309, 10.1007/BF02684402
Reference: [29] J.  Xu, A.  Zhou: A two-grid discretization scheme for eigenvalue problems.Math. Comput. 70 (2001), 17–25. MR 1677419, 10.1090/S0025-5718-99-01180-1
Reference: [30] X.  Ye: Superconvergence of nonconforming finite element method for the Stokes equations.Numer. Methods Partial Differ. Equations 18 (2002), 143–154. Zbl 1003.65121, MR 1902289, 10.1002/num.1036
Reference: [31] A.  Zhou, J.  Li: The full approximation accuracy for the stream function-vorticity-pressure method.Numer. Math. 68 (1994), 427–435. Zbl 0823.65110, MR 1313153, 10.1007/s002110050070
.

Files

Files Size Format View
AplMat_51-2006-1_6.pdf 344.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo