Title:
|
Approximation of an eigenvalue problem associated with the Stokes problem by the stream function-vorticity-pressure method (English) |
Author:
|
Chen, Wei |
Author:
|
Lin, Qun |
Language:
|
English |
Journal:
|
Applications of Mathematics |
ISSN:
|
0862-7940 (print) |
ISSN:
|
1572-9109 (online) |
Volume:
|
51 |
Issue:
|
1 |
Year:
|
2006 |
Pages:
|
73-88 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
By means of eigenvalue error expansion and integral expansion techniques, we propose and analyze the stream function-vorticity-pressure method for the eigenvalue problem associated with the Stokes equations on the unit square. We obtain an optimal order of convergence for eigenvalues and eigenfuctions. Furthermore, for the bilinear finite element space, we derive asymptotic expansions of the eigenvalue error, an efficient extrapolation and an a posteriori error estimate for the eigenvalue. Finally, numerical experiments are reported. (English) |
Keyword:
|
eigenvalue problem |
Keyword:
|
Stokes problem |
Keyword:
|
stream function-vorticity-pressure method |
Keyword:
|
asymptotic expansion |
Keyword:
|
extrapolation |
Keyword:
|
a posteriori error estimates |
MSC:
|
35Q30 |
MSC:
|
65N25 |
MSC:
|
65N30 |
MSC:
|
76D07 |
idZBL:
|
Zbl 1164.65489 |
idMR:
|
MR2197324 |
DOI:
|
10.1007/s10492-006-0006-x |
. |
Date available:
|
2009-09-22T18:24:57Z |
Last updated:
|
2020-07-02 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/134631 |
. |
Reference:
|
[1] I. Babuška, J. Osborn: Eigenvalue problems.Handbook of Numerical Analysis, Vol. II, Finite Element Method (Part I), P. G. Ciarlet, J. L. Lions (eds.), North-Holland Publ., Amsterdam, 1991, pp. 641–787. MR 1115240 |
Reference:
|
[2] M. Bercovier, O. Pironneau: Error estimates for finite element method solution of the Stokes problem in the primitive variables.Numer. Math. 33 (1979), 211–224. MR 0549450, 10.1007/BF01399555 |
Reference:
|
[3] P. E. Bjørstad, B. P. Tjøstheim: High precision solutions of two fourth order eigenvalue problems.Computing 63 (1999), 97–107. MR 1736662, 10.1007/s006070050053 |
Reference:
|
[4] D. Boffi, F. Brezzi, and L. Gastaldi: On the problem of spurious eigenvalues in the approximation of linear elliptic problems in mixed form.Math. Comput. 69 (2000), 121–140. MR 1642801, 10.1090/S0025-5718-99-01072-8 |
Reference:
|
[5] D. Boffi, F. Brezzi, and L. Gastaldi: On the convergence of eigenvalues for mixed formulations.Ann. Sc. Norm. Super. Pisa, Cl. Sci. 25 (1997), 131–154. MR 1655512 |
Reference:
|
[6] F. Brezzi, M. Fortin: Mixed and Hybrid Finite Element Methods. Springer Series in Computational Mathematics Vol. 15.Springer-Verlag, New York, 1991. MR 1115205 |
Reference:
|
[7] B. M. Brown, E. B. Davies, P. K. Jimack, and M. D. Mihajlović: A numerical investigation of the solution of a class of fourth-order eigenvalue problems.Proc. R. Soc. Lond. A 456 (2000), 1505–1521. MR 1808762, 10.1098/rspa.2000.0573 |
Reference:
|
[8] P. G. Ciarlet: The Finite Element Method for Elliptic Problems.North-Holland Publ., Amsterdam, 1978. Zbl 0383.65058, MR 0520174 |
Reference:
|
[9] P. G. Ciarlet, P.-A. Raviart: A mixed finite element method for the biharmonic equation.Aspects finite Elem. partial Differ. Equat., Proc. Symp. Madison, C. de Boor (ed.), Academic Press, New York, 1974, pp. 125–145. MR 0657977 |
Reference:
|
[10] V. Girault, P.-A. Raviart: Finite Element Methods for Navier-Stokes Equations. Theory and Algorithms.Springer-Verlag, Berlin, 1986. MR 0851383 |
Reference:
|
[11] R. Glowinski, O. Pironneau: On a mixed finite element approximation of the Stokes problem. I: Convergence of the approximate solution.Numer. Math. 33 (1979), 397–424. MR 0553350, 10.1007/BF01399323 |
Reference:
|
[12] V. Heuveline, R. Rannacher: A posteriori error control for finite element approximations of elliptic eigenvalue problems.Adv. Comput. Math. 15 (2001), 107–138. MR 1887731, 10.1023/A:1014291224961 |
Reference:
|
[13] Q. Hu, J. Zou: Two new variants of nonlinear inexact Uzawa algorithms for saddle-point problems.Numer. Math. 93 (2002), 333–359. MR 1941400, 10.1007/s002110100386 |
Reference:
|
[14] K. Ishihara: A mixed finite element method for the biharmonic eigenvalue problem of plate bending.Publ. Res. Inst. Math. Sci. Kyoto Univ. 14 (1978), 399–414. MR 0509196, 10.2977/prims/1195189071 |
Reference:
|
[15] M. Křížek: Comforming finite element approximation of the Stokes problem.Banach Cent. Publ. 24 (1990), 389–396. 10.4064/-24-1-389-396 |
Reference:
|
[16] M. Křížek, P. Neittaanmäki: On superconvergence techniques.Acta Appl. Math. 9 (1987), 175–198. MR 0900263, 10.1007/BF00047538 |
Reference:
|
[17] Q. Lin, J. Lin: Finite Element Methods: Accuracy and Improvement.China Sci. Tech. Press, Beijing, 2005. |
Reference:
|
[18] Q. Lin, T. Lu: Asymptotic expansions for finite element eigenvalues and finite element solution.Bonn Math. Schr. 158 (1984), 1–10. Zbl 0549.65072, MR 0793412 |
Reference:
|
[19] Q. Lin, N. Yan: High Efficiency FEM Construction and Analysis.Hebei Univ. Press, , 1996. |
Reference:
|
[20] B. Mercier, J. Osborn, J. Rappaz, and P.-A. Raviart: Eigenvalue approximation by mixed and hybrid methods.Math. Comput. 36 (1981), 427–453. MR 0606505, 10.1090/S0025-5718-1981-0606505-9 |
Reference:
|
[21] J. Osborn: Spectral approximation for compact operators.Math. Comput. 29 (1975), 712–725. Zbl 0315.35068, MR 0383117, 10.1090/S0025-5718-1975-0383117-3 |
Reference:
|
[22] J. Osborn: Approximation of the eigenvalue of a nonselfadjoint operator arising in the study of the stability of stationary solutions of the Navier-Stokes equations.SIAM J. Numer. Anal. 13 (1976), 185–197. Zbl 0334.76010, MR 0447842, 10.1137/0713019 |
Reference:
|
[23] R. Rannacher, S. Turek: Simple noncomforming quadrilateral Stokes element.Numer. Methods Partial Differ. Equations 8 (1992), 97–111. MR 1148797, 10.1002/num.1690080202 |
Reference:
|
[24] R. Rannacher: Noncomforming finite element methods for eigenvalue problems in linear plate theory.Numer. Math. 33 (1979), 23–42. MR 0545740, 10.1007/BF01396493 |
Reference:
|
[25] R. Stenberg: Postprocess schemes for some mixed finite elements.RAIRO Modélisation Math. Anal. Numér. 25 (1991), 151–168. MR 1086845, 10.1051/m2an/1991250101511 |
Reference:
|
[26] R. Verfürth: Error estimates for a mixed finite element approximation of the Stokes equations.RAIRO, Anal. Numér. 18 (1984), 175–182. 10.1051/m2an/1984180201751 |
Reference:
|
[27] J. Wang, X. Ye: Superconvergence of finite element approximations for the Stokes problem by the projection methods.SIAM J. Numer. Anal. 39 (2001), 1001–1013. MR 1860454, 10.1137/S003614290037589X |
Reference:
|
[28] C. Wieners: Bounds for the $N$ lowest eigenvalues of fourth-order boundary value problems.Computing 59 (1997), 29–41. Zbl 0883.65082, MR 1465309, 10.1007/BF02684402 |
Reference:
|
[29] J. Xu, A. Zhou: A two-grid discretization scheme for eigenvalue problems.Math. Comput. 70 (2001), 17–25. MR 1677419, 10.1090/S0025-5718-99-01180-1 |
Reference:
|
[30] X. Ye: Superconvergence of nonconforming finite element method for the Stokes equations.Numer. Methods Partial Differ. Equations 18 (2002), 143–154. Zbl 1003.65121, MR 1902289, 10.1002/num.1036 |
Reference:
|
[31] A. Zhou, J. Li: The full approximation accuracy for the stream function-vorticity-pressure method.Numer. Math. 68 (1994), 427–435. Zbl 0823.65110, MR 1313153, 10.1007/s002110050070 |
. |