Previous |  Up |  Next

Article

Title: Finite volume schemes for multi-dimensional hyperbolic systems based on the use of bicharacteristics (English)
Author: Lukáčová-Medviďová, Mária
Author: Saibertová-Zatočilová, Jitka
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 51
Issue: 3
Year: 2006
Pages: 205-228
Summary lang: English
.
Category: math
.
Summary: In this paper we present recent results for the bicharacteristic based finite volume schemes, the so-called finite volume evolution Galerkin (FVEG) schemes. These methods were proposed to solve multi-dimensional hyperbolic conservation laws. They combine the usually conflicting design objectives of using the conservation form and following the characteristics, or bicharacteristics. This is realized by combining the finite volume formulation with approximate evolution operators, which use bicharacteristics of the multi-dimensional hyperbolic system. In this way all of the infinitely many directions of wave propagation are taken into account. The main goal of this paper is to present a self-contained overview on the recent results. We study the $L^1$-stability of the finite volume schemes obtained by various approximations of the flux integrals. Several numerical experiments presented in the last section confirm robustness and correct multi-dimensional behaviour of the FVEG methods. (English)
Keyword: multidimensional finite volume methods
Keyword: bicharacteristics
Keyword: hyperbolic systems
Keyword: wave equation
Keyword: Euler equations
MSC: 35L45
MSC: 35L65
MSC: 65M12
MSC: 65M25
MSC: 65M60
MSC: 76M12
idZBL: Zbl 1164.76358
idMR: MR2228663
DOI: 10.1007/s10492-006-0012-z
.
Date available: 2009-09-22T18:25:38Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134637
.
Reference: [1] M. Brio, A. R. Zakharian, and G. M. Webb: Two-dimensional Riemann solver for Euler equations of gas dynamics.J.  Comput. Phys. 167 (2001), 177–195. 10.1006/jcph.2000.6666
Reference: [2] M.  Fey: Multidimensional upwinding, Part II. Decomposition of the Euler equations into advection equations.J.  Comput. Phys. 143 (1998), 181–199. MR 1624688, 10.1006/jcph.1998.5959
Reference: [3] T.  Kröger, S.  Noelle: Numerical comparison of the Method of Transport to a standard scheme.Comput. Fluids 34 (2003), 541–560. 10.1016/j.compfluid.2003.12.002
Reference: [4] A.  Kurganov, S.  Noelle, and G.  Petrova: Semidiscrete central-unpwind schemes for hyperbolic conservation laws and Hamilton-Jacobi equations.SIAM J. Sci. Comput. 23 (2001), 707–740. MR 1860961, 10.1137/S1064827500373413
Reference: [5] R. J. LeVeque: Wave propagation algorithms for multidimensional hyperbolic systems.J. Comput. Phys. 131 (1997), 327–353. Zbl 0872.76075
Reference: [6] J. Li, M. Lukáčová-Medviďová, G. Warnecke: Evolution Galerkin schemes for the two-dimensional Riemann problems for the wave equation systems.Discrete Contin. Dyn. Syst.  (A) 9 (2003), 559–576. MR 1974525, 10.3934/dcds.2003.9.559
Reference: [7] M. Lukáčová-Medviďová, K. W. Morton, and G. Warnecke: Evolution Galerkin methods for hyperbolic systems in two space dimensions.Math. Comput. 69 (2000), 1355–1384. MR 1709154, 10.1090/S0025-5718-00-01228-X
Reference: [8] M. Lukáčová-Medviďová, K. W.  Morton, and G.  Warnecke: Finite volume evolution Galerkin methods for Euler equations of gas dynamics.Internat. J.  Numer. Methods Fluids 40 (2002), 425–434. MR 1932992, 10.1002/fld.297
Reference: [9] M. Lukáčová-Medviďová, K. W.  Morton, and G.  Warnecke: Finite volume evolution Galerkin (FVEG) methods for hyperbolic systems.SIAM J. Sci. Comput. 26 (2004), 1–30. MR 2114332, 10.1137/S1064827502419439
Reference: [10] M. Lukáčová-Medviďová, J. Saibertová, and G. Warnecke: Finite volume evolution Galerkin methods for nonlinear hyperbolic systems.J. Comput. Phys. 183 (2002), 533–562. MR 1947781
Reference: [11] M. Lukáčová-Medviďová, G. Warnecke: Lax-Wendroff type second order evolution Galerkin methods for multidimensional hyperbolic systems.East-West  Numer. Math. 8 (2000), 127–152. MR 1773188
Reference: [12] M. Lukáčová-Medviďová, G. Warnecke, and Y. Zahaykah: On the stability of the evolution Galerkin schemes applied to a two-dimensional wave equation system.SIAM J.  Numer. Anal. (2006), In print. MR 2257117
Reference: [13] K. W. Morton: On the analysis of finite volume methods for evolutionary problems.SIAM J.  Numer. Anal. 35 (1998), 2195–2222. Zbl 0927.65119, MR 1655843, 10.1137/S0036142997316967
Reference: [14] S. Noelle: The MOT-ICE: a new high-resolution wave-propagation algorithm for multi-dimensional systems of conservative laws based on Fey’s method of transport.J.  Comput. Phys. 164 (2000), 283–334. MR 1792514, 10.1006/jcph.2000.6598
Reference: [15] S. Ostkamp: Multidimensional characterisitic Galerkin schemes and evolution operators for hyperbolic systems.Math. Methods Appl. Sci. 20 (1997), 1111–1125. MR 1465396, 10.1002/(SICI)1099-1476(19970910)20:13<1111::AID-MMA903>3.0.CO;2-1
Reference: [16] S. Ostkamp: Multidimensional characteristic Galerkin schemes and evolution operators for hyperbolic systems.PhD. thesis, University Hannover, 1995. Zbl 0831.76067, MR 1361170
Reference: [17] J. Saibertová: Genuinely multidimensional finite volume schemes for systems of conservation laws.PhD. thesis, Technical University Brno, 2003.
Reference: [18] Y. Zahaykah: Evolution Galerkin schemes and discrete boundary conditions for multidimensional first order systems.PhD. thesis, University of Magdeburg, 2002.
.

Files

Files Size Format View
AplMat_51-2006-3_1.pdf 1.038Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo