Previous |  Up |  Next

Article

Title: On an elasto-dynamic evolution equation with non dead load and friction (English)
Author: Chau, Oanh
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 51
Issue: 3
Year: 2006
Pages: 229-246
Summary lang: English
.
Category: math
.
Summary: In this paper, we are interested in the dynamic evolution of an elastic body, acted by resistance forces depending also on the displacements. We put the mechanical problem into an abstract functional framework, involving a second order nonlinear evolution equation with initial conditions. After specifying convenient hypotheses on the data, we prove an existence and uniqueness result. The proof is based on Faedo-Galerkin method. (English)
Keyword: evolution equation
Keyword: existence and uniqueness
Keyword: Faedo-Galerkin method
Keyword: friction
Keyword: elasticity
Keyword: dynamic process
MSC: 34G20
MSC: 34K07
MSC: 34K10
MSC: 47H05
MSC: 74B20
MSC: 74H20
MSC: 74H25
MSC: 74M10
MSC: 74M15
idZBL: Zbl 1164.34460
idMR: MR2228664
DOI: 10.1007/s10492-006-0013-y
.
Date available: 2009-09-22T18:25:45Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134638
.
Reference: [1] V.  Barbu: Nonlinear Semigroups and Differential Equations in Banach Spaces.Noordhoff International Publishing, Leyden, 1976. Zbl 0328.47035, MR 0390843
Reference: [2] H.  Brézis: Analyse fonctionnelle. Théorie et Application.Masson, Paris, 1983. MR 0697382
Reference: [3] F. E. Browder: On non-linear wave equations.Math.  Z. 80 (1962), 249–264. Zbl 0109.32102, MR 0147769, 10.1007/BF01162382
Reference: [4] T. Cazenave, A. Haraux: An Introduction to Semilinear Evolution Equations.Clarendon Press, Oxford, 1998. MR 1691574
Reference: [5] O.  Chau, J. R.  Fernández, W.  Han, and M.  Sofonea: Variational and numerical analysis of a dynamic frictionless contact problem with adhesion.J.  Comput. Appl. Math. 156 (2003), 127–157. MR 1982938, 10.1016/S0377-0427(02)00909-3
Reference: [6] P. G. Ciarlet: Mathematical Elasticity, Vol.  I: Three-dimmensional Elasticity.North Holland, Amsterdam, 1988. MR 0936420
Reference: [7] R. Dautray, J.-L. Lions: Mathematical Analysis and Numerical Methods for Science and Technology, Tome  5.Springer-Verlag, Berlin, 2000.
Reference: [8] G.  Duvaut, J.-L.  Lions: Inequalities in Mechanics and Physics.Springer-Verlag, Berlin-Heidelberg-New York, 1976. MR 0521262
Reference: [9] J.  Jarušek: Dynamic contact problems with given friction for viscoelastic bodies.Czech. Math. J. 46(121) (1996), 475–487. MR 1408299
Reference: [10] J.  Jarušek, C.  Eck: Dynamic contact problems with small Coulomb friction for viscoelastic bodies. Existence of solutions.Math. Models Methods Appl. Sci. 9 (1999), 11–34. MR 1671535, 10.1142/S0218202599000038
Reference: [11] J.-L.  Lions: Quelques méthodes de résolution des problèmes aux limites non linéaires.Dunod et Gauthier-Villars, Paris, 1969. Zbl 0189.40603, MR 0259693
Reference: [12] T. Kato: Linear and quasi-linear equations of evolution of hyperbolic type.Hyperbolicity, C.I.M.E., II. ciclo, Cortona 1976, Liguori, Napoli, 1977, pp. 125–191. Zbl 0456.35052
Reference: [13] N.  Kikuchi, J. T.  Oden: Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods.SIAM publications, Philadelphia, 1988. MR 0961258
Reference: [14] J.-L.  Lions, E.  Magenes: Problèmes aux limites non homogènes et applications, Vol.  1.Dunod, Paris, 1968. MR 0247243
Reference: [15] J. A. C.  Martins, T. J. Oden: Models and computational methods for dynamic friction phenomena.Comput. Methods Appl. Mech. Eng. 52 (1985), 527–634. MR 0822757, 10.1016/0045-7825(85)90009-X
Reference: [16] J.  Nečas, I.  Hlaváček: Mathematical Theory of Elastic and Elasto-plastic Bodies: An Introduction.Elsevier, Amsterdam, 1981. MR 0600655
Reference: [17] H. Tanabe: Equations of Evolution.Pitman, London, 1979. Zbl 0417.35003, MR 0533824
Reference: [18] L.  Trabucho, J. M.  Viaño: Mathematical modelling of rods.In: Handbook of Numerical Analysis, Vol.  IV, P. G.  Ciarlet, J.-L. Lions (eds.), North Holland, Amsterdam, 1996, pp. 487–974. MR 1422507
Reference: [19] E.  Zeidler: Nonlinear Functional Analysis and Its Applications, II/A: Linear Monotone Operators.Springer-Verlag, New York, 1990. Zbl 0684.47028, MR 1033497
Reference: [20] E.  Zeidler: Nonlinear Functional Analysis and Its Applications, II/B: Non-linear Monotone Operators.Springer-Verlag, New York, 1990. MR 1033498
.

Files

Files Size Format View
AplMat_51-2006-3_2.pdf 360.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo