Previous |  Up |  Next

Article

Title: On the search for singularities in incompressible flows (English)
Author: Córdoba, Diego
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 51
Issue: 4
Year: 2006
Pages: 299-320
Summary lang: English
.
Category: math
.
Summary: In these notes we give some examples of the interaction of mathematics with experiments and numerical simulations on the search for singularities. (English)
Keyword: Navier-Stokes equations
Keyword: singularities
Keyword: incompressible flows
MSC: 35Q35
MSC: 74H35
MSC: 76D03
idZBL: Zbl 1164.76320
idMR: MR2291777
DOI: 10.1007/s10778-006-0108-x
.
Date available: 2009-09-22T18:26:17Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134643
.
Reference: [1] J. T.  Beale, T. Kato, and A. Majda: Remarks on the breakdown of smooth solutions for the 3D Euler equations.Commun. Math. Phys. 94 (1984), 61–66. MR 0763762, 10.1007/BF01212349
Reference: [2] A. L.  Bertozzi, P.  Constantin: Global regularity for vortex patches.Commun. Math. Phys. 152 (1993), 19–28. MR 1207667, 10.1007/BF02097055
Reference: [3] A. L.  Bertozzi, A. J.  Majda: Vorticity and the Mathematical Theory of Incompresible Fluid Flow. Cambridge Texts in Applied Mathematics No.  27.Cambridge University Press, Cambridge, 2002. MR 1867882
Reference: [4] D.  Chae: On the Euler equations in the critical Triebel-Lizorkin spaces.Arch. Ration. Mech. Anal. 170 (2003), 185–210. Zbl 1093.76005, MR 2020259, 10.1007/s00205-003-0271-8
Reference: [5] D.  Chae: The quasi-geostrophic equation in the Triebel-Lizorkin spaces.Nonlinearity 16 (2003), 479–495. Zbl 1029.35006, MR 1958612, 10.1088/0951-7715/16/2/307
Reference: [6] D.  Chae, J.  Lee: Global well-posedness in the super-critical dissipative quasi-geostrophic equations.Commun. Math. Phys. 233 (2003), 297–311. MR 1962043, 10.1007/s00220-002-0750-z
Reference: [7] J. Y.  Chemin: Persistance de structures géométriques dans les fluides incompressibles bidimensionnels.Ann. Sci. Ec. Norm. Supér. 26 (1993), 517–542. (French) Zbl 0779.76011, MR 1235440, 10.24033/asens.1679
Reference: [8] P.  Constantin: Energy spectrum of quasi-geostrophic turbulence.Phys. Rev. Lett. 89 (2002), 1804501–1804504. 10.1103/PhysRevLett.89.184501
Reference: [9] P. Constantin, D. Córdoba, and J. Wu: On the critical dissipative quasi-geostrophic equation.Indiana Univ. Math. J. 50 (2001), 97–107. MR 1855665, 10.1512/iumj.2001.50.2153
Reference: [10] P. Constantin, C. Fefferman, and A. J. Majda: Geometric constraints on potentially singular solutions for the 3-D Euler equations.Commun. Partial Differ. Equation 21 (1996), 559–571. MR 1387460, 10.1080/03605309608821197
Reference: [11] P. Constantin, A. J. Majda, and E. Tabak: Formation of strong fronts in the 2-D quasigeostrophic thermal active scalar.Nonlinearity 7 (1994), 1495–1533. MR 1304437, 10.1088/0951-7715/7/6/001
Reference: [12] P. Constantin, Q.  Nie, and N. Schorghofer: Nonsingular surface-quasi-geostrophic flow.Phys. Lett.  A 241 (1998), 168–172. MR 1613907, 10.1016/S0375-9601(98)00108-X
Reference: [13] P. Constantin, J. Wu: Behavior of solutions of 2D  quasi-geostrophic equations.SIAM J.  Math. Anal. 30 (1999), 937–948. Zbl 0957.76093, MR 1709781, 10.1137/S0036141098337333
Reference: [14] A.  Córdoba, D.  Córdoba: A pointwise estimate for fractionary derivatives with applications to partial differential equations.Proc. Natl. Acad. Sci. USA 100 (2003), 15316–15317. MR 2032097, 10.1073/pnas.2036515100
Reference: [15] A.  Córdoba, D.  Córdoba: A maximum principle applied to quasi-geostrophic equations.Commun. Math. Phys. 249 (2004), 511–528. MR 2084005, 10.1007/s00220-004-1055-1
Reference: [16] A.  Córdoba, D.  Córdoba, C. L.  Fefferman, and M. A. Fontelos: A geometrical constraint for capillary jet breakup.Adv. Math. 187 (2004), 228–239. MR 2074177, 10.1016/j.aim.2003.08.009
Reference: [17] D.  Córdoba: Nonexistence of simple hyperbolic blow-up for the quasi-geostrophic equation.Ann. Math. 148 (1998), 1135–1152. MR 1670077, 10.2307/121037
Reference: [18] D.  Córdoba, C.  Fefferman: On the collapse of tubes carried by 3D  incompressible flows.Commun. Math. Phys. 222 (2001), 293–298. MR 1859600, 10.1007/s002200100502
Reference: [19] D. Córdoba, C. Fefferman, and R. de la  Llave: On squirt singularities in hydrodynamics.SIAM J.  Math. Anal. 36 (2004), 204–213. MR 2083858, 10.1137/S0036141003424095
Reference: [20] D.  Córdoba, C.  Fefferman, and J. L.  Rodrigo: Almost sharp fronts for the surface quasi-geostrophic equations.Proc. Natl. Acad. Sci. USA 101 (2004), 2687–2691. MR 2036970, 10.1073/pnas.0308154101
Reference: [21] D.  Córdoba, M.  Fontelos, A.  Mancho, and J. L.  Rodrigo: Evidence of singularities for a family of contour dynamics equations.Proc. Natl. Acad. Sci. USA 102 (2005), 5949–5952. MR 2141918, 10.1073/pnas.0501977102
Reference: [22] R. J.  Diperna, P. L. Lions: Ordinary differential equations, transport theory and Sobolev spaces.Invent. Math. 98 (1989), 511–547. MR 1022305, 10.1007/BF01393835
Reference: [23] C. R.  Doering, J. D.  Gibbon: Applied analysis of the Navier Stokes equations.Cambridge University Press, Cambridge, 1995. MR 1325465
Reference: [24] C.  Foias, C.  Guillopé, and R.  Témam: New a priori estimates for Navier-Stokes equations in dimension  3.Commun. Partial Differ. Equations 6 (1981), 329–359. MR 0607552, 10.1080/03605308108820180
Reference: [25] I. M. Held, R. Pierrehumbert, and S. T.  Garner: Surface quasi-geostrophic dynamics.J.  Fluid Mech. 282 (1995), 1–20. MR 1312238, 10.1017/S0022112095000012
Reference: [26] N. Ju: The maximum principle and the global attractor for the dissipative 2D  quasi-geostrophic equations.Commun. Math. Phys. 255 (2005), 161–181. Zbl 1088.37049, MR 2123380, 10.1007/s00220-004-1256-7
Reference: [27] H.  Kozono, Y.  Taniuchi: Limiting case of the Sobolev inequality in  BMO, with application to the Euler equations.Commun. Math. Phys. 214 (2000), 191–200. MR 1794270, 10.1007/s002200000267
Reference: [28] T. A.  Kowalewski: On the separation of droplets from a liquid jet.Fluid Dyn. Res. 17 (1996), 121–145.
Reference: [29] K. Ohkitani, M. Yamada: Inviscid and inviscid-limit behavior of a surface quasi-geostrophic flow.Phys. Fluids 9 (1997), 876–882. MR 1437554, 10.1063/1.869184
Reference: [30] J. Pedlosky: Geophysical Fluid Dynamics.Springer-Verlag, New York, 1987. Zbl 0713.76005
Reference: [31] M. T.  Plateau: Smithsonian Report 250.1863.
Reference: [32] Rayleigh, Lord (J. W.  Strutt): On the instability of jets.Proc. L.  M.  S. 10 (1879), 4–13.
Reference: [33] S. Resnick: Dynamical problem in nonlinear advective partial differential equations.PhD.  Thesis, University of Chicago, 1995.
Reference: [34] J. L.  Rodrigo: On the evolution of sharp fronts for the quasi-geostrophic equation.Commun. Pure Appl. Math. 58 (2005), 821–866. Zbl 1073.35006, MR 2142632, 10.1002/cpa.20059
Reference: [35] R.  Salmon: Lectures on Geophysical Fluid Dynamics.Oxford University Press, New York, 1998. MR 1718369
Reference: [36] F.  Savart: Mémoire sur la Constitution des veines liquides lancées par des orifices circulaires en mince paroi.Ann. Chim. Phys. 53 (1833), 337–386. (French)
Reference: [37] X. D. Shi, M. P.  Brenner, and S. R.  Nagel: A cascade of structure in a drop falling from a faucet.Science 265 (1994), 219–222. MR 1282463, 10.1126/science.265.5169.219
Reference: [38] E. M. Stein: Singular Integrals and Differentiability Properties of Functions.Princeton University Press, Princeton, 1970. Zbl 0207.13501, MR 0290095
Reference: [39] E. M. Stein: Harmonic Analysis.Princeton University Press, Princeton, 1993. Zbl 0821.42001, MR 1232192
Reference: [40] M.  Sussman, P.  Smereka: Axisymmetric free boundary problems.J.  Fluid Mech. 341 (1997), 269–294. MR 1457712, 10.1017/S0022112097005570
Reference: [41] L. Tartar: Topics in Nonlinear Analysis. Publications Mat. D’Orsay, No.  7813.Univ. de Paris-Sud, Orsay, 1978. MR 0532371
.

Files

Files Size Format View
AplMat_51-2006-4_2.pdf 642.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo