Previous |  Up |  Next

Article

Title: On Large Eddy Simulation and Variational Multiscale Methods in the numerical simulation of turbulent incompressible flows (English)
Author: John, Volker
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 51
Issue: 4
Year: 2006
Pages: 321-353
Summary lang: English
.
Category: math
.
Summary: Numerical simulation of turbulent flows is one of the great challenges in Computational Fluid Dynamics (CFD). In general, Direct Numerical Simulation (DNS) is not feasible due to limited computer resources (performance and memory), and the use of a turbulence model becomes necessary. The paper will discuss several aspects of two approaches of turbulent modeling—Large Eddy Simulation (LES) and Variational Multiscale (VMS) models. Topics which will be addressed are the detailed derivation of these models, the analysis of commutation errors in LES models as well as other results from mathematical analysis. (English)
Keyword: incompressible turbulent flows
Keyword: Large Eddy Simulation (LES)
Keyword: commutation errors
Keyword: Variational Multiscale (VMS) methods
MSC: 35Q35
MSC: 65M06
MSC: 65M99
MSC: 76D05
MSC: 76F02
MSC: 76F65
idZBL: Zbl 1164.76348
idMR: MR2291778
DOI: 10.1007/s10778-006-0109-9
.
Date available: 2009-09-22T18:26:24Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134644
.
Reference: [1] R. A.  Adams, J. J. F.  Fournier: Sobolev Spaces.Academic Press, New York, 2003, 2nd  edition. MR 2424078
Reference: [2] A. A.  Aldama: Filtering Techniques for Turbulent Flow Simulation. Lecture Notes in Engineering, Vol.  56.Springer-Verlag, Berlin, 1990. MR 1097828, 10.1007/978-3-642-84091-3
Reference: [3] L. C.  Berselli, C. R.  Grisanti, and V. John: On commutation errors in the derivation of the space averaged Navier-Stokes equations.Preprint 12, Università di Pisa, Dipartimento di Matematica Applicata “U.  Dini”, 2004. MR 2761078
Reference: [4] L. C.  Berselli, T. Iliescu, and W. J.  Layton: Mathematics of Large Eddy Simulation of Turbulent Flows.Springer-Verlag, Berlin, 2006. MR 2185509
Reference: [5] L. C.  Berselli, V. John: Asymptotic behavior of commutation errors and the divergence of the Reynolds stress tensor near the wall in the turbulent channel flow.Math. Methods Appl. Sci. (2006), In press. MR 2248564, 10.1002/mma.750
Reference: [6] R. A.  Clark, J. H.  Ferziger, and W. C.  Reynolds: Evaluation of subgrid-scale models using an accurately simulated turbulent flow.J.  Fluid Mech. 91 (1979), 1–16. 10.1017/S002211207900001X
Reference: [7] S. S.  Collis: Monitoring unresolved scales in multiscale turbulence modeling.Physics of Fluids 13 (2001), 1800–1806. Zbl 1184.76110, 10.1063/1.1367872
Reference: [8] P. A.  Davidson: Turbulence. An Introduction for Scientists and Engineers.Oxford University Press, Oxford, 2004. Zbl 1061.76001, MR 2077129
Reference: [9] A. Dunca, V. John, and W. J.  Layton: The commutation error of the space averaged Navier-Stokes equations on a bounded domain.In: Contributions to Current Challenges in Mathematical Fluid Mechanics, J. G. Heywood G. P. Galdi, and R. Rannacher (eds.), Birkhäuser-Verlag, Basel, 2004, pp. 53–78. MR 2085847
Reference: [10] C. L.  Fefferman: Existence & smoothness of the Navier-Stokes equations.http://www.claymath.org/millennium/Navier-Stokes_Equations/ (2000).
Reference: [11] P. Fischer, T. Iliescu: Large eddy simulation of turbulent channel flows by the rational LES  model.Phys. Fluids 15 (2003), 3036–3047. 10.1063/1.1604781
Reference: [12] P. Fischer, T. Iliescu: Backscatter in the rational LES  model.Comput. Fluids 33 (2004), 783–790. 10.1016/j.compfluid.2003.06.011
Reference: [13] G. B.  Folland: Introduction to Partial Differential Equations. Mathematical Notes, Vol. 17.Princeton University Press, Princeton, 1995, 2nd edition. MR 1357411
Reference: [14] G. P.  Galdi: An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Vol. I: Linearized Steady Problems. Springer Tracts in Natural Philosophy, Vol 38.Springer-Verlag, New York, 1994. MR 1284205
Reference: [15] G. P.  Galdi: An introduction to the Navier-Stokes initial-boundary value problem.In: Fundamental Directions in Mathematical Fluid Dynamics, G. P.  Galdi, J. G.  Heywood, and R. Rannacher (eds.), Birkhäuser-Verlag, Basel, 2000, pp. 1–70. Zbl 1108.35133, MR 1798753
Reference: [16] G. P.  Galdi, W. J.  Layton: Approximation of the larger eddies in fluid motion. II:  A model for space filtered flow.Math. Models Methods Appl. Sci. 10 (2000), 343–350. MR 1753115, 10.1142/S0218202500000203
Reference: [17] M. Germano, U. Piomelli, P. Moin, and W. Cabot: A dynamic subgrid-scale eddy viscosity model.Phys. Fluids  A 3 (1991), 1760–1765. 10.1063/1.857955
Reference: [18] V. Gravemeier: The variational multiscale method for laminar and turbulent incompressible flow.PhD.  Thesis, Institute of Structural Mechanics, University of Stuttgart, 2003.
Reference: [19] V. Gravemeier, W. A.  Wall, and E. Ramm: A three-level finite element method for the instationary incompressible Navier-Stokes equations.Comput. Methods Appl. Mech. Eng. 193 (2004), 1323–1366. MR 2068898, 10.1016/j.cma.2003.12.027
Reference: [20] J.-L.  Guermond: Stabilization of Galerkin approximations of transport equations by subgrid modeling.M2AN, Math. Model. Numer. Anal. 33 (1999), 1293–1316. Zbl 0946.65112, MR 1736900, 10.1051/m2an:1999145
Reference: [21] J.-L.  Guermond, J. T.  Oden, and S. Prudhomme: Mathematical perspectives on large eddy simulation models for turbulent flows.J.  Math. Fluid Mech. 6 (2004), 194–248. MR 2053583
Reference: [22] L. Hörmander: The Analysis of Linear Partial Differential Operators  I. Distribution Theory and Fourier Analysis.Springer-Verlag, Berlin-Heidelberg-New York, 1990, 2nd edition.
Reference: [23] T. J. R.  Hughes, L. Mazzei, and K. E.  Jansen: Large eddy simulation and the variational multiscale method.Comput. Vis. Sci. 3 (2000), 47–59. 10.1007/s007910050051
Reference: [24] T. J. R.  Hughes: Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid-scale models, bubbles and the origins of stabilized methods.Comput. Methods Appl. Mech. Eng. 127 (1995), 387–401. Zbl 0866.76044, MR 1365381, 10.1016/0045-7825(95)00844-9
Reference: [25] T. J. R.  Hughes, L. Mazzei, A. A.  Oberai, and A. A.  Wray: The multiscale formulation of large eddy simulation: decay of homogeneous isotropic turbulence.Phys. Fluids 13 (2001), 505–512. 10.1063/1.1332391
Reference: [26] T. J. R.  Hughes, A. A.  Oberai, and L. Mazzei: Large eddy simulation of turbulent channel flows by the variational multiscale method.Phys. Fluids 13 (2001), 1784–1799. 10.1063/1.1367868
Reference: [27] T. Iliescu, V. John, W. J.  Layton, G. Matthies, and L. Tobiska: A numerical study of a class of LES  models.Int. J.  Comput. Fluid Dyn. 17 (2003), 75–85. MR 1961907, 10.1080/1061856021000009209
Reference: [28] T. Iliescu, W. J.  Layton: Approximating the larger eddies in fluid motion. III: The Boussinesq model for turbulent fluctuations.An. Stiin. Univ. Al. I. Cuza Iasi, ser. Noua, Mat. 44 (1998), 245–261. MR 1783204
Reference: [29] V. John: Large Eddy Simulation of Turbulent Incompressible Flows. Analytical and Numerical Results for a Class of LES  Models. Lecture Notes in Computational Science and Engineering, Vol. 34.Springer-Verlag, Berlin, 2004. MR 2018955
Reference: [30] V. John: An assessment of two models for the subgrid scale tensor in the rational LES model.J.  Comput. Appl. Math. 173 (2005), 57–80. Zbl 1107.76040, MR 2098628, 10.1016/j.cam.2004.02.022
Reference: [31] V. John, S. Kaya: A finite element variational multiscale method for the Navier-Stokes equations.SIAM J.  Sci. Comput. 26 (2005), 1485–1503. MR 2142582, 10.1137/030601533
Reference: [32] V. John, S. Kaya: Finite element error analysis of a variational multiscale method for the Navier-Stokes equations.Adv. Comp. Math. (2006), In press. MR 2358041
Reference: [33] V. John, S. Kaya, and W. Layton: A two-level variational multiscale method for convection-dominated convection-diffusion equations.Comput. Methods Appl. Mech. Eng. 195 (2006), 4594–4603. MR 2229851, 10.1016/j.cma.2005.10.006
Reference: [34] V. John, W. J.  Layton: Analysis of numerical errors in large eddy simulation.SIAM J.  Numer. Anal. 40 (2002), 995–1020. MR 1949402, 10.1137/S0036142900375554
Reference: [35] S. Kaya, W. J.  Layton: Subgrid-scale eddy viscosity models are variational multiscale methods.Technical Report TR-MATH 03-05, University of Pittsburgh, 2003.
Reference: [36] S. Kaya, B. Riviere: A discontinuous subgrid eddy viscosity method for the time dependent Navier-Stokes equations.SIAM J.  Numer. Anal. 43 (2005), 1572–1595. MR 2182140, 10.1137/S0036142903434862
Reference: [37] A. N.  Kolmogoroff: The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers.C. R. (Dokl). Akad. Nauk URSS 30 (1941), 301–305. (Russian) MR 0004146
Reference: [38] R. H.  Kraichnan: Inertial ranges in two dimensional turbulence.Phys. Fluids 10 (1967), 1417–1423. 10.1063/1.1762301
Reference: [39] O. A.  Ladyzhenskaya: New equations for the description of motion of viscous incompressible fluids and solvability in the large of boundary value problems for them.Tr. Mat. Inst. Steklova 102 (1967), 85–104. Zbl 0202.37802, MR 0226907
Reference: [40] L. D.  Landau, E. M.  Lifshitz: Fluid Mechanics. Vol.  6 of Course of Theoretical Physics.Pergamon Press, Oxford, 1987, 2nd edition. MR 0961259
Reference: [41] W. J.  Layton: A connection between subgrid scale eddy viscosity and mixed methods.Appl. Math. Comput. 133 (2002), 147–157. Zbl 1024.76026, MR 1923189, 10.1016/S0096-3003(01)00228-4
Reference: [42] A. Leonard: Energy cascade in large eddy simulation of turbulent fluid flows.Adv. Geophys. 18A (1974), 237–248.
Reference: [43] M. Lesieur: Turbulence in Fluids. Fluid Mechanics and Its Applications, Vol.  40.Kluwer Academic Publishers, , 1997, 3rd  edition. MR 1447438
Reference: [44] D. K.  Lilly: A proposed modification of the Germano subgrid-scale closure method.Phys. Fluids  A 4 (1992), 633–635. 10.1063/1.858280
Reference: [45] B. Mohammadi, O. Pironneau: Analysis of the K-Epsilon Turbulence Model.John Wiley & Sons, New York, 1994. MR 1296252
Reference: [46] N. V.  Nikitin, F. Nicoud, B. Wasistho, K. D.  Squires, and P. R.  Spalart: An approach to wall modeling in large-eddy simulation.Phys. Fluids 12 (2000), 1629–1632. 10.1063/1.870414
Reference: [47] U. Piomelli, E. Balaras: Wall-layer models for large eddy simulation.Annu. Rev. Fluid Mech. 34 (2002), 349–374. MR 1893771, 10.1146/annurev.fluid.34.082901.144919
Reference: [48] S. B.  Pope: Turbulent Flows.Cambridge University Press, Cambridge, 2000. Zbl 0966.76002, MR 1881598
Reference: [49] L. F.  Richardson: Weather Prediction by Numerical Process.Cambridge University Press, Cambridge, 1922. MR 2358797
Reference: [50] W. Rudin: Functional Analysis. International Series in Pure and Applied Mathematics.McGraw-Hill, New York, 1991, 2nd edition. MR 1157815
Reference: [51] P. Sagaut: Large Eddy Simulation for Incompressible Flows. An Introduction.Springer-Verlag, Berlin, 2002. Zbl 1020.76001, MR 1941970
Reference: [52] H. Schlichting: Boundary-Layer Theory.McGraw-Hill, New York, 1979. Zbl 0434.76027, MR 0076530
Reference: [53] H. Sohr: The Navier-Stokes Equations. An Elementary Functional Analytic Approach. Birhäuser Advanced Texts.Birkhäuser-Verlag, Basel, 2001. MR 1928881
Reference: [54] A. Świerczewska: Mathematical analysis of large eddy simulation of turbulent flows.PhD.  Thesis, TU Darmstadt, 2004. Zbl 1081.76002
Reference: [55] F. van der Bos, B. J.  Geurts: Commutator errors in the filtering approach to large-eddy simulation.Physics of Fluids 17 (2005), . MR 2136436
Reference: [56] E. R.  van Driest: On turbulent flow near a wall.J.  Aeronaut. Sci. 23 (1956), 1007–1011. Zbl 0073.20802, 10.2514/8.3713
Reference: [57] Y. Zhang, R. L.  Street, and J. R.  Koseff: A dynamic mixed subgrid-scale model and its application to turbulent recirculating flows.Phys. Fluids  A 5 (1993), 3186–3196. 10.1063/1.858675
.

Files

Files Size Format View
AplMat_51-2006-4_3.pdf 583.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo