Title:
|
Weak solutions to a nonlinear variational wave equation and some related problems (English) |
Author:
|
Zhang, Ping |
Language:
|
English |
Journal:
|
Applications of Mathematics |
ISSN:
|
0862-7940 (print) |
ISSN:
|
1572-9109 (online) |
Volume:
|
51 |
Issue:
|
4 |
Year:
|
2006 |
Pages:
|
427-466 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper we present some results on the global existence of weak solutions to a nonlinear variational wave equation and some related problems. We first introduce the main tools, the $L^p$ Young measure theory and related compactness results, in the first section. Then we use the $L^p$ Young measure theory to prove the global existence of dissipative weak solutions to the asymptotic equation of the nonlinear wave equation, and comment on its relation to Camassa-Holm equations in the second section. In the third section, we prove the global existence of weak solutions to the original nonlinear wave equation under some restrictions on the wave speed. In the last section, we present global existence of renormalized solutions to two-dimensional model equations of the asymptotic equation, which is also the so-called vortex density equation arising from sup-conductivity. (English) |
Keyword:
|
variational wave equation |
Keyword:
|
weak solutions |
Keyword:
|
$L^p$ Young measure |
Keyword:
|
renormalized solutions |
MSC:
|
35D05 |
MSC:
|
35L05 |
MSC:
|
35L50 |
MSC:
|
35L60 |
idZBL:
|
Zbl 1164.35330 |
idMR:
|
MR2291780 |
DOI:
|
10.1007/s10778-006-0111-2 |
. |
Date available:
|
2009-09-22T18:26:37Z |
Last updated:
|
2020-07-02 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/134646 |
. |
Reference:
|
[1] A. Bressan, Ping Zhang, and Yuxi Zheng: On the asymptotic variational wave equations.Archive for Rational Mechanics and Analysis, Online 2006. MR 2259342, 10.1007/s00205-006-0014-8 |
Reference:
|
[2] R. Camassa, D. Holm: An integrable shallow water equation with peaked solitons.Phys. Rev. Lett. 71 (1993), 1661–1664. MR 1234453, 10.1103/PhysRevLett.71.1661 |
Reference:
|
[3] J. S. Chapman, J. Rubinstein, and M. Schatzman: A mean-field model of superconducting vortices.Eur. J. Appl. Math. 7 (1996), 97–111. MR 1388106, 10.1017/S0956792500002242 |
Reference:
|
[4] A. Constantin, J. Escher: Wave breaking for nonlinear nonlocal shallow water equations.Acta Math. 181 (1998), 229–243. MR 1668586, 10.1007/BF02392586 |
Reference:
|
[5] R. J. DiPerna: Convergence of the viscosity method for isentropic gas dynamics.Comm. Math. Phys. 91 (1983), 1–30. Zbl 0533.76071, MR 0719807, 10.1007/BF01206047 |
Reference:
|
[6] R. J. DiPerna, P.-L. Lions: Ordinary differential equations, transport theory and Sobolev spaces.Invent. Math. 98 (1989), 511–547. MR 1022305, 10.1007/BF01393835 |
Reference:
|
[7] R. J. DiPerna, P.-L. Lions: On the Cauchy problem for Boltzmann equations: Global existence and weak stability.Ann. Math. 130 (1989), 321–366. MR 1014927, 10.2307/1971423 |
Reference:
|
[8] R. J. DiPerna, A. J. Majda: Oscillations and concentration in weak solutions of the incompressible fluid equations.Commun. Math. Phys. 108 (1987), 667–689. MR 0877643, 10.1007/BF01214424 |
Reference:
|
[9] Qiang Du, Ping Zhang: Existence of weak solutions to some vortex density models.SIAM J. Math. Anal. 34 (2003), 1279–1299. MR 2000970, 10.1137/S0036141002408009 |
Reference:
|
[10] E. Weinan: Dynamics of vortex liquids in Ginsburg-Landau theories with application to superconductivity.Phys. Rev. B 50 (1994), 1126–1135. 10.1103/PhysRevB.50.1126 |
Reference:
|
[11] L. C. Evans: Weak Convergence Methods for Nonlinear Partial Differential Equations. CBMS No. 74.AMS, Providence, 1990. MR 1034481 |
Reference:
|
[12] E. Feireisl, A. Novotný, and H. Petzeltová: On the existence of globally defined weak solutions to the Navier-Stokes equations.J. Math. Fluid Mech. 3 (2001), 358–392. MR 1867887, 10.1007/PL00000976 |
Reference:
|
[13] B. Fuchssteiner, A. S. Fokas: Symplectic structures, their Bäcklund transformations and hereditary symmetries.Phys. D 4 (1981/1982), 47–66. MR 0636470, 10.1016/0167-2789(81)90004-X |
Reference:
|
[14] R. T. Glassey, J. K. Hunter, and Yuxi Zheng: Singularities and oscillations in a nonlinear variational wave equation.In: Singularities and Oscillations. IMA, Vol. 91, J. Rauch, M. Taylor (eds.), Springer-Verlag, New York, 1997, pp. 37–60. MR 1601273 |
Reference:
|
[15] R. T. Glassey, J. K. Hunter, and Yuxi Zheng: Singularities of a variational wave equation.J. Differ. Equations 129 (1996), 49–78. MR 1400796, 10.1006/jdeq.1996.0111 |
Reference:
|
[16] A. Grundland E. Infeld: A family of nonlinear Klein-Gordon equations and their solutions.J. Math. Phys. 33 (1992), 2498–2503. MR 1167950, 10.1063/1.529620 |
Reference:
|
[17] J. K. Hunter, R. A. Saxton: Dynamics of director fields.SIAM J. Appl. Math. 51 (1991), 1498–1521. MR 1135995, 10.1137/0151075 |
Reference:
|
[18] J. K. Hunter, Yuxi Zheng: On a nonlinear hyperbolic variational equation I and II.Arch. Ration. Mech. Anal. 129 (1995), 305–353, 355–383. 10.1007/BF00379259 |
Reference:
|
[19] R. L. Jerrard, H. M. Soner: Dynamics of Ginzburg-Landau vortices.Arch. Ration. Mech. Anal. 142 (1998), 99–125. MR 1629646, 10.1007/s002050050085 |
Reference:
|
[20] J. L. Joly, G. Metivier, and J. Rauch: Focusing at a point and absorption of nonlinear oscillations.Trans. Am. Math. Soc. 347 (1995), 3921–3969. MR 1297533, 10.1090/S0002-9947-1995-1297533-8 |
Reference:
|
[21] P. Gérard: Microlocal defect measures.Commun. Partial Differ. Equations 16 (1991), 1761–1794. MR 1135919, 10.1080/03605309108820822 |
Reference:
|
[22] Fanghua Lin: Some dynamical properties of Ginzburg-Landau vortices.Commun. Pure Appl. Math. 49 (1996), 323–359. MR 1376654, 10.1002/(SICI)1097-0312(199604)49:4<323::AID-CPA1>3.0.CO;2-E |
Reference:
|
[23] Fanghua Lin, Ping Zhang: On the hydrodynamic limit of Ginzburg-Landau vortices.Discrete Contin. Dyn. Syst. 6 (2000), 121–142. MR 1739596, 10.3934/dcds.2000.6.121 |
Reference:
|
[24] P.-L. Lions: Mathematical Topics in Fluid Mechanics, Vol. 2, Compressible Models. Oxford Lecture Series in Mathematics and Its Applications.Clarendon Press, Oxford, 1998. MR 1637634 |
Reference:
|
[25] P.-L. Lions, N. Masmoudi: Global solutions for some Oldroyd models of non-Newtonian flows.Chin. Ann. Math., Ser. B 21 (2000), 131–146. MR 1763488, 10.1142/S0252959900000170 |
Reference:
|
[26] N. Masmoudi, Ping Zhang: Weak solutions to the vortex density equations arising from sup-conductivity.Ann. Inst. Henri Poincaré, Anal. Non Linéaire 22 (2005), 441–458. MR 2145721, 10.1016/j.anihpc.2004.07.002 |
Reference:
|
[27] H. Mckean: Breakdown of shallow water equation.Asian J. Math. 2 (1998), 867–874. MR 1734131, 10.4310/AJM.1998.v2.n4.a10 |
Reference:
|
[28] F. Murat: Compacité par compensation.Ann. Sc. Norm. Super. Pisa, Cl. Sci, IV 5 (1978), 489–507. Zbl 0399.46022, MR 0506997 |
Reference:
|
[29] R. A. Saxton: Dynamic instability of the liquid crystal director.In: Contemp. Math. Vol. 100: Current Progress in Hyperbolic Systems, W. B. Lindquist (ed.), AMS, Providence, 1989, pp. 325–330. Zbl 0702.35180, MR 1033527 |
Reference:
|
[30] L. Tartar: Compensated compactness and applications to partial differential equations. Nonlinear Anal. Mech. Heriot-Watt Symposium.Research Notes in Math., Vol. 39,, R. J. Knops (ed.), Pitman Press, , 1979. MR 0584398 |
Reference:
|
[31] L. Tartar: $H$-measures, a new approach for studying homogenisation, oscillations and concentration effects in partial differential equations.Proc. R. Soc. Edinb., Sect. A 115 (1990), 193–230. Zbl 0774.35008, MR 1069518, 10.1017/S0308210500020606 |
Reference:
|
[32] Zhouping Xin, Ping Zhang: On the weak solutions to a shallow water equation.Comm. Pure. Appl. Math. LIII (2000), 1411–1433. MR 1773414 |
Reference:
|
[33] L. C. Young: Lectures on the Calculus of Variations and Optimal Control Theory.Saunders, Philadelphia-London-Toronto, 1969. Zbl 0177.37801, MR 0259704 |
Reference:
|
[34] Ping Zhang, Yuxi Zheng: On oscillations of an asymptotic equation of a nonlinear variational wave equation.Asymptotic Anal. 18 (1998), 307–327. MR 1668954 |
Reference:
|
[35] Ping Zhang, Yuxi Zheng: Existence and uniqueness of solutions to an asymptotic equation arising from a variational wave equation with general data.Arch. Ration. Mech. Anal. 155 (2000), 49–83. MR 1799274, 10.1007/s205-000-8002-2 |
Reference:
|
[36] Ping Zhang, Yuxi Zheng: Rarefactive solutions to a nonlinear variational wave equation.Commun. Partial Differ. Equations 26 (2001), 381–419. MR 1842038, 10.1081/PDE-100002240 |
Reference:
|
[37] Ping Zhang, Yuxi Zheng: Singular and rarefactive solutions to a nonlinear variational wave equation.Chin Ann. Math., Ser. B 22 (2001), 159–170. MR 1835396, 10.1142/S0252959901000152 |
Reference:
|
[38] Ping Zhang, Yuxi Zheng: Weak solutions to nonlinear variational wave equation.Arch. Ration. Mech. Anal. 166 (2003), 303–319. MR 1961443, 10.1007/s00205-002-0232-7 |
Reference:
|
[39] Ping Zhang, Yuxi Zheng: Weak solutions to a nonlinear variational wave equation with general data.Ann. Inst. Henri Poincaré, Anal. Non Linéaire 22 (2005), 207–226. MR 2124163, 10.1016/j.anihpc.2004.04.001 |
Reference:
|
[40] H. Zorski, E. Infeld: New soliton equations for dipole chains.Phys. Rev. Lett. 68 (1992), 1180–1183. 10.1103/PhysRevLett.68.1180 |
. |