Previous |  Up |  Next

Article

Title: Weak solutions to a nonlinear variational wave equation and some related problems (English)
Author: Zhang, Ping
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 51
Issue: 4
Year: 2006
Pages: 427-466
Summary lang: English
.
Category: math
.
Summary: In this paper we present some results on the global existence of weak solutions to a nonlinear variational wave equation and some related problems. We first introduce the main tools, the $L^p$ Young measure theory and related compactness results, in the first section. Then we use the $L^p$ Young measure theory to prove the global existence of dissipative weak solutions to the asymptotic equation of the nonlinear wave equation, and comment on its relation to Camassa-Holm equations in the second section. In the third section, we prove the global existence of weak solutions to the original nonlinear wave equation under some restrictions on the wave speed. In the last section, we present global existence of renormalized solutions to two-dimensional model equations of the asymptotic equation, which is also the so-called vortex density equation arising from sup-conductivity. (English)
Keyword: variational wave equation
Keyword: weak solutions
Keyword: $L^p$ Young measure
Keyword: renormalized solutions
MSC: 35D05
MSC: 35L05
MSC: 35L50
MSC: 35L60
idZBL: Zbl 1164.35330
idMR: MR2291780
DOI: 10.1007/s10778-006-0111-2
.
Date available: 2009-09-22T18:26:37Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134646
.
Reference: [1] A.  Bressan, Ping Zhang, and Yuxi Zheng: On the asymptotic variational wave equations.Archive for Rational Mechanics and Analysis, Online 2006. MR 2259342, 10.1007/s00205-006-0014-8
Reference: [2] R. Camassa, D. Holm: An integrable shallow water equation with peaked solitons.Phys. Rev. Lett. 71 (1993), 1661–1664. MR 1234453, 10.1103/PhysRevLett.71.1661
Reference: [3] J. S. Chapman, J. Rubinstein, and M. Schatzman: A mean-field model of superconducting vortices.Eur. J.  Appl. Math. 7 (1996), 97–111. MR 1388106, 10.1017/S0956792500002242
Reference: [4] A. Constantin, J. Escher: Wave breaking for nonlinear nonlocal shallow water equations.Acta Math. 181 (1998), 229–243. MR 1668586, 10.1007/BF02392586
Reference: [5] R. J. DiPerna: Convergence of the viscosity method for isentropic gas dynamics.Comm. Math. Phys. 91 (1983), 1–30. Zbl 0533.76071, MR 0719807, 10.1007/BF01206047
Reference: [6] R. J. DiPerna, P.-L. Lions: Ordinary differential equations, transport theory and Sobolev spaces.Invent. Math. 98 (1989), 511–547. MR 1022305, 10.1007/BF01393835
Reference: [7] R. J. DiPerna, P.-L. Lions: On the Cauchy problem for Boltzmann equations: Global existence and weak stability.Ann. Math. 130 (1989), 321–366. MR 1014927, 10.2307/1971423
Reference: [8] R. J. DiPerna, A. J. Majda: Oscillations and concentration in weak solutions of the incompressible fluid equations.Commun. Math. Phys. 108 (1987), 667–689. MR 0877643, 10.1007/BF01214424
Reference: [9] Qiang Du, Ping Zhang: Existence of weak solutions to some vortex density models.SIAM J.  Math. Anal. 34 (2003), 1279–1299. MR 2000970, 10.1137/S0036141002408009
Reference: [10] E. Weinan: Dynamics of vortex liquids in Ginsburg-Landau theories with application to superconductivity.Phys. Rev.  B 50 (1994), 1126–1135. 10.1103/PhysRevB.50.1126
Reference: [11] L. C. Evans: Weak Convergence Methods for Nonlinear Partial Differential Equations. CBMS No. 74.AMS, Providence, 1990. MR 1034481
Reference: [12] E. Feireisl, A. Novotný, and H.  Petzeltová: On the existence of globally defined weak solutions to the Navier-Stokes equations.J.  Math. Fluid Mech. 3 (2001), 358–392. MR 1867887, 10.1007/PL00000976
Reference: [13] B. Fuchssteiner, A. S.  Fokas: Symplectic structures, their Bäcklund transformations and hereditary symmetries.Phys.  D 4 (1981/1982), 47–66. MR 0636470, 10.1016/0167-2789(81)90004-X
Reference: [14] R. T.  Glassey, J. K.  Hunter, and Yuxi Zheng: Singularities and oscillations in a nonlinear variational wave equation.In: Singularities and Oscillations. IMA, Vol.  91, J.  Rauch, M.  Taylor (eds.), Springer-Verlag, New York, 1997, pp. 37–60. MR 1601273
Reference: [15] R. T. Glassey, J. K. Hunter, and Yuxi Zheng: Singularities of a variational wave equation.J. Differ. Equations 129 (1996), 49–78. MR 1400796, 10.1006/jdeq.1996.0111
Reference: [16] A.  Grundland E.  Infeld: A family of nonlinear Klein-Gordon equations and their solutions.J.  Math. Phys. 33 (1992), 2498–2503. MR 1167950, 10.1063/1.529620
Reference: [17] J. K. Hunter, R. A. Saxton: Dynamics of director fields.SIAM J.  Appl. Math. 51 (1991), 1498–1521. MR 1135995, 10.1137/0151075
Reference: [18] J. K. Hunter, Yuxi Zheng: On a nonlinear hyperbolic variational equation  I and II.Arch. Ration. Mech. Anal. 129 (1995), 305–353, 355–383. 10.1007/BF00379259
Reference: [19] R. L.  Jerrard, H. M.  Soner: Dynamics of Ginzburg-Landau vortices.Arch. Ration. Mech. Anal. 142 (1998), 99–125. MR 1629646, 10.1007/s002050050085
Reference: [20] J. L.  Joly, G.  Metivier, and J.  Rauch: Focusing at a point and absorption of nonlinear oscillations.Trans. Am. Math. Soc. 347 (1995), 3921–3969. MR 1297533, 10.1090/S0002-9947-1995-1297533-8
Reference: [21] P. Gérard: Microlocal defect measures.Commun. Partial Differ. Equations 16 (1991), 1761–1794. MR 1135919, 10.1080/03605309108820822
Reference: [22] Fanghua Lin: Some dynamical properties of Ginzburg-Landau vortices.Commun. Pure Appl. Math. 49 (1996), 323–359. MR 1376654, 10.1002/(SICI)1097-0312(199604)49:4<323::AID-CPA1>3.0.CO;2-E
Reference: [23] Fanghua Lin, Ping Zhang: On the hydrodynamic limit of Ginzburg-Landau vortices.Discrete Contin. Dyn. Syst. 6 (2000), 121–142. MR 1739596, 10.3934/dcds.2000.6.121
Reference: [24] P.-L. Lions: Mathematical Topics in Fluid Mechanics, Vol. 2, Compressible Models. Oxford Lecture Series in Mathematics and Its Applications.Clarendon Press, Oxford, 1998. MR 1637634
Reference: [25] P.-L.  Lions, N. Masmoudi: Global solutions for some Oldroyd models of non-Newtonian flows.Chin. Ann. Math., Ser.  B 21 (2000), 131–146. MR 1763488, 10.1142/S0252959900000170
Reference: [26] N. Masmoudi, Ping Zhang: Weak solutions to the vortex density equations arising from sup-conductivity.Ann. Inst. Henri  Poincaré, Anal. Non Linéaire 22 (2005), 441–458. MR 2145721, 10.1016/j.anihpc.2004.07.002
Reference: [27] H. Mckean: Breakdown of shallow water equation.Asian J.  Math. 2 (1998), 867–874. MR 1734131, 10.4310/AJM.1998.v2.n4.a10
Reference: [28] F. Murat: Compacité par compensation.Ann. Sc. Norm. Super. Pisa, Cl.  Sci, IV 5 (1978), 489–507. Zbl 0399.46022, MR 0506997
Reference: [29] R. A.  Saxton: Dynamic instability of the liquid crystal director.In: Contemp. Math. Vol.  100: Current Progress in Hyperbolic Systems, W. B. Lindquist (ed.), AMS, Providence, 1989, pp. 325–330. Zbl 0702.35180, MR 1033527
Reference: [30] L. Tartar: Compensated compactness and applications to partial differential equations. Nonlinear Anal. Mech. Heriot-Watt Symposium.Research Notes in Math., Vol.  39,, R. J. Knops (ed.), Pitman Press, , 1979. MR 0584398
Reference: [31] L. Tartar: $H$-measures, a new approach for studying homogenisation, oscillations and concentration effects in partial differential equations.Proc. R. Soc. Edinb., Sect. A 115 (1990), 193–230. Zbl 0774.35008, MR 1069518, 10.1017/S0308210500020606
Reference: [32] Zhouping Xin, Ping Zhang: On the weak solutions to a shallow water equation.Comm. Pure. Appl. Math. LIII (2000), 1411–1433. MR 1773414
Reference: [33] L. C. Young: Lectures on the Calculus of Variations and Optimal Control Theory.Saunders, Philadelphia-London-Toronto, 1969. Zbl 0177.37801, MR 0259704
Reference: [34] Ping Zhang, Yuxi Zheng: On oscillations of an asymptotic equation of a nonlinear variational wave equation.Asymptotic Anal. 18 (1998), 307–327. MR 1668954
Reference: [35] Ping Zhang, Yuxi Zheng: Existence and uniqueness of solutions to an asymptotic equation arising from a variational wave equation with general data.Arch. Ration. Mech. Anal. 155 (2000), 49–83. MR 1799274, 10.1007/s205-000-8002-2
Reference: [36] Ping Zhang, Yuxi Zheng: Rarefactive solutions to a nonlinear variational wave equation.Commun. Partial Differ. Equations 26 (2001), 381–419. MR 1842038, 10.1081/PDE-100002240
Reference: [37] Ping Zhang, Yuxi Zheng: Singular and rarefactive solutions to a nonlinear variational wave equation.Chin Ann. Math., Ser. B 22 (2001), 159–170. MR 1835396, 10.1142/S0252959901000152
Reference: [38] Ping Zhang, Yuxi Zheng: Weak solutions to nonlinear variational wave equation.Arch. Ration. Mech. Anal. 166 (2003), 303–319. MR 1961443, 10.1007/s00205-002-0232-7
Reference: [39] Ping Zhang, Yuxi Zheng: Weak solutions to a nonlinear variational wave equation with general data.Ann. Inst. Henri  Poincaré, Anal. Non Linéaire 22 (2005), 207–226. MR 2124163, 10.1016/j.anihpc.2004.04.001
Reference: [40] H.  Zorski, E.  Infeld: New soliton equations for dipole chains.Phys. Rev. Lett. 68 (1992), 1180–1183. 10.1103/PhysRevLett.68.1180
.

Files

Files Size Format View
AplMat_51-2006-4_5.pdf 502.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo