Previous |  Up |  Next


Neumann problem; degenerate elliptic equations
In the paper we study the equation $Lu=f$, where $L$ is a degenerate elliptic operator, with Neumann boundary condition in a bounded open set ${\Omega }$. We prove existence and uniqueness of solutions in the space $H(\Omega )$ for the Neumann problem.
[1] S.  Chanillo, R. L.  Wheeden: Harnack’s inequalities and mean-value inequalities for solutions of degenerate elliptic equations. Commun. PDE 11 (1986), 1111–1134. DOI 10.1080/03605308608820458 | MR 0847996
[2] S.  Chanillo, R. L.  Wheeden: Existence and estimates for Green’s function for degenerate elliptic equations. Ann. Sc. Norm. Super. Pisa IV ser. 15, Fasc.  II (1988), 309–340. MR 1007400
[3] B.  Franchi, R.  Serapioni: Pointwise estimates for a class of strongly degenerate elliptic operators: A geometrical approch. Ann. Sc. Norm. Sup. Pisa C1 ser. 14 (1987), 527–568. MR 0963489
[4] B.  Muckenhoupt: Weighted norm inequalities for the Hardy maximal function. Trans. Am. Math. Soc. 165 (1972), 207–226. DOI 10.1090/S0002-9947-1972-0293384-6 | MR 0293384 | Zbl 0236.26016
[5] A.  Torchinsky: Real-Variable Methods in Harmonic Analysis. Academic Press, Orlando, 1986. MR 0869816 | Zbl 0621.42001
[6] A.  Kufner, O.  John, and S.  Fučík: Function Spaces. Noordhoff International Publishing, Leyden, 1977. MR 0482102
[7] A.  Kufner: Weighted Sobolev Spaces. John Wiley & Sons, New York, 1985. MR 0802206 | Zbl 0579.35021
[8] J.  Heinonen, T.  Kilpeläinen, and O.  Martio: Nonlinear Potential Theory of Degenerate Elliptic Equations. Oxford Math. Monographs. Clarendon Press, Oxford, 1993. MR 1207810
[9] J.  Garcia-Cuerva, J. L.  Rubio de Francia: Weighted Norm Inequalities and Related Topics. North-Holland Mathematics Studies  116. North Holland, Amsterdam-New York-Oxford, 1985. MR 0807149
[10] B. O.  Turesson: Nonlinear Potential Theory and Weighted Sobolev Spaces. Lectures Notes in Mathematics Vol.  1736. Springer-Verlag, Berlin, 2000. MR 1774162
[11] V.  Chiadò Piat, F.  Serra Cassano: Relaxation of degenerate variational integrals. Nonlinear Anal., Theory Methods Appl. 22 (1994), 409–424. DOI 10.1016/0362-546X(94)90165-1 | MR 1266369
Partner of
EuDML logo