Previous |  Up |  Next


nonlocal operator; large eddy simulation; Smagorinsky model; dynamic Germano model
In the note we are concerned with higher regularity and uniqueness of solutions to the stationary problem arising from the large eddy simulation of turbulent flows. The system of equations contains a nonlocal nonlinear term, which prevents straightforward application of a difference quotients method. The existence of weak solutions was shown in A. Świerczewska: Large eddy simulation. Existence of stationary solutions to the dynamical model, ZAMM, Z. Angew. Math. Mech. 85 (2005), 593–604 and P. Gwiazda, A. Świerczewska: Large eddy simulation turbulence model with Young measures, Appl. Math. Lett. 18 (2005), 923–929.
[1] R. A. Adams: Sobolev Spaces. Academic Press, New York-San Francisco-London, 1975. MR 0450957 | Zbl 0314.46030
[2] H. Brezis: Analyse Fonctionelle. Théorie et Applications. Dunod, Paris, 1994. (French)
[3] L. C. Evans: Partial Differential Equations. AMS, Providence, 1998. MR 1625845 | Zbl 0902.35002
[4] M. Germano, U. Piomelli, P. Moin, and W. Cabot: A dynamic subgrid-scale eddy viscosity model. Phys. Fluids  A 3 (1991), 1760–1765. DOI 10.1063/1.857955
[5] M. Giaquinta: Introduction to Regularity Theory for Nonlinear Elliptic Systems. Birkhäuser-Verlag, Basel, 1993. MR 1239172 | Zbl 0786.35001
[6] D. Gilbarg, N. S. Trudinger: Elliptic Partial Differential Equations of Second Order. Springer-Verlag, Berlin-Heidelberg-New York, 1977. MR 0473443
[7] P. Gwiazda, A.  Świerczewska: Large eddy simulation turbulence model with Young measures. Appl. Math. Lett. 18 (2005), 923–929. DOI 10.1016/j.aml.2004.07.035 | MR 2152305
[8] L. Hörmander: The Analysis of Linear Partial Differential Operators  I. Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1983.
[9] V.  John: Large Eddy Simulation of Turbulent Incompressible Flows. Analytical and Numerical Results for a Class of LES Models. Lecture Notes in Computational Science and Engineering. Springer-Verlag, Berlin, 2004. MR 2018955
[10] P. Kaplický, J. Málek, and J. Stará: Full regularity of weak solutions to a class of nonlinear fluids in two dimensions—stationary, periodic problem. Commentat. Math. Univ. Carolinae 38 (1997), 681–695.
[11] D. K. Lilly: A proposed modification of the Germano subgrid-scale closure method. Phys. Fluids  A 4 (1992), 633–635. DOI 10.1063/1.858280
[12] J. Málek, J. Nečas, M. Rokyta, and M. Růžička: Weak and Measure-Valued Solutions to Evolutionary PDEs. Chapman & Hall, London, 1996. MR 1409366
[13] P. Sagaut: Large Eddy Simulation for Incompressible Flows. Springer-Verlag, Berlin, 2001. MR 1815221 | Zbl 0964.76002
[14] A. Świerczewska: Large eddy simulation. Existence of stationary solutions to the dynamical model. ZAMM, Z. Angew. Math. Mech. 85 (2005), 593–604. DOI 10.1002/zamm.200410200 | MR 2156086
Partner of
EuDML logo