Title:
|
Regularity and uniqueness for the stationary large eddy simulation model (English) |
Author:
|
Świerczewska, Agnieszka |
Language:
|
English |
Journal:
|
Applications of Mathematics |
ISSN:
|
0862-7940 (print) |
ISSN:
|
1572-9109 (online) |
Volume:
|
51 |
Issue:
|
6 |
Year:
|
2006 |
Pages:
|
629-641 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In the note we are concerned with higher regularity and uniqueness of solutions to the stationary problem arising from the large eddy simulation of turbulent flows. The system of equations contains a nonlocal nonlinear term, which prevents straightforward application of a difference quotients method. The existence of weak solutions was shown in A. Świerczewska: Large eddy simulation. Existence of stationary solutions to the dynamical model, ZAMM, Z. Angew. Math. Mech. 85 (2005), 593–604 and P. Gwiazda, A. Świerczewska: Large eddy simulation turbulence model with Young measures, Appl. Math. Lett. 18 (2005), 923–929. (English) |
Keyword:
|
nonlocal operator |
Keyword:
|
large eddy simulation |
Keyword:
|
Smagorinsky model |
Keyword:
|
dynamic Germano model |
MSC:
|
35D10 |
MSC:
|
35Q35 |
MSC:
|
76F65 |
idZBL:
|
Zbl 1164.76349 |
idMR:
|
MR2291787 |
DOI:
|
10.1007/s10492-006-0026-6 |
. |
Date available:
|
2009-09-22T18:27:56Z |
Last updated:
|
2020-07-02 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/134658 |
. |
Reference:
|
[1] R. A. Adams: Sobolev Spaces.Academic Press, New York-San Francisco-London, 1975. Zbl 0314.46030, MR 0450957 |
Reference:
|
[2] H. Brezis: Analyse Fonctionelle. Théorie et Applications.Dunod, Paris, 1994. (French) |
Reference:
|
[3] L. C. Evans: Partial Differential Equations.AMS, Providence, 1998. Zbl 0902.35002, MR 1625845 |
Reference:
|
[4] M. Germano, U. Piomelli, P. Moin, and W. Cabot: A dynamic subgrid-scale eddy viscosity model.Phys. Fluids A 3 (1991), 1760–1765. 10.1063/1.857955 |
Reference:
|
[5] M. Giaquinta: Introduction to Regularity Theory for Nonlinear Elliptic Systems.Birkhäuser-Verlag, Basel, 1993. Zbl 0786.35001, MR 1239172 |
Reference:
|
[6] D. Gilbarg, N. S. Trudinger: Elliptic Partial Differential Equations of Second Order.Springer-Verlag, Berlin-Heidelberg-New York, 1977. MR 0473443 |
Reference:
|
[7] P. Gwiazda, A. Świerczewska: Large eddy simulation turbulence model with Young measures.Appl. Math. Lett. 18 (2005), 923–929. MR 2152305, 10.1016/j.aml.2004.07.035 |
Reference:
|
[8] L. Hörmander: The Analysis of Linear Partial Differential Operators I.Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1983. |
Reference:
|
[9] V. John: Large Eddy Simulation of Turbulent Incompressible Flows. Analytical and Numerical Results for a Class of LES Models. Lecture Notes in Computational Science and Engineering.Springer-Verlag, Berlin, 2004. MR 2018955 |
Reference:
|
[10] P. Kaplický, J. Málek, and J. Stará: Full regularity of weak solutions to a class of nonlinear fluids in two dimensions—stationary, periodic problem.Commentat. Math. Univ. Carolinae 38 (1997), 681–695. |
Reference:
|
[11] D. K. Lilly: A proposed modification of the Germano subgrid-scale closure method.Phys. Fluids A 4 (1992), 633–635. 10.1063/1.858280 |
Reference:
|
[12] J. Málek, J. Nečas, M. Rokyta, and M. Růžička: Weak and Measure-Valued Solutions to Evolutionary PDEs.Chapman & Hall, London, 1996. MR 1409366 |
Reference:
|
[13] P. Sagaut: Large Eddy Simulation for Incompressible Flows.Springer-Verlag, Berlin, 2001. Zbl 0964.76002, MR 1815221 |
Reference:
|
[14] A. Świerczewska: Large eddy simulation. Existence of stationary solutions to the dynamical model.ZAMM, Z. Angew. Math. Mech. 85 (2005), 593–604. MR 2156086, 10.1002/zamm.200410200 |
. |