Previous |  Up |  Next

Article

Title: Regularity and uniqueness for the stationary large eddy simulation model (English)
Author: Świerczewska, Agnieszka
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 51
Issue: 6
Year: 2006
Pages: 629-641
Summary lang: English
.
Category: math
.
Summary: In the note we are concerned with higher regularity and uniqueness of solutions to the stationary problem arising from the large eddy simulation of turbulent flows. The system of equations contains a nonlocal nonlinear term, which prevents straightforward application of a difference quotients method. The existence of weak solutions was shown in A. Świerczewska: Large eddy simulation. Existence of stationary solutions to the dynamical model, ZAMM, Z. Angew. Math. Mech. 85 (2005), 593–604 and P. Gwiazda, A. Świerczewska: Large eddy simulation turbulence model with Young measures, Appl. Math. Lett. 18 (2005), 923–929. (English)
Keyword: nonlocal operator
Keyword: large eddy simulation
Keyword: Smagorinsky model
Keyword: dynamic Germano model
MSC: 35D10
MSC: 35Q35
MSC: 76F65
idZBL: Zbl 1164.76349
idMR: MR2291787
DOI: 10.1007/s10492-006-0026-6
.
Date available: 2009-09-22T18:27:56Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134658
.
Reference: [1] R. A. Adams: Sobolev Spaces.Academic Press, New York-San Francisco-London, 1975. Zbl 0314.46030, MR 0450957
Reference: [2] H. Brezis: Analyse Fonctionelle. Théorie et Applications.Dunod, Paris, 1994. (French)
Reference: [3] L. C. Evans: Partial Differential Equations.AMS, Providence, 1998. Zbl 0902.35002, MR 1625845
Reference: [4] M. Germano, U. Piomelli, P. Moin, and W. Cabot: A dynamic subgrid-scale eddy viscosity model.Phys. Fluids  A 3 (1991), 1760–1765. 10.1063/1.857955
Reference: [5] M. Giaquinta: Introduction to Regularity Theory for Nonlinear Elliptic Systems.Birkhäuser-Verlag, Basel, 1993. Zbl 0786.35001, MR 1239172
Reference: [6] D. Gilbarg, N. S. Trudinger: Elliptic Partial Differential Equations of Second Order.Springer-Verlag, Berlin-Heidelberg-New York, 1977. MR 0473443
Reference: [7] P. Gwiazda, A.  Świerczewska: Large eddy simulation turbulence model with Young measures.Appl. Math. Lett. 18 (2005), 923–929. MR 2152305, 10.1016/j.aml.2004.07.035
Reference: [8] L. Hörmander: The Analysis of Linear Partial Differential Operators  I.Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1983.
Reference: [9] V.  John: Large Eddy Simulation of Turbulent Incompressible Flows. Analytical and Numerical Results for a Class of LES Models. Lecture Notes in Computational Science and Engineering.Springer-Verlag, Berlin, 2004. MR 2018955
Reference: [10] P. Kaplický, J. Málek, and J. Stará: Full regularity of weak solutions to a class of nonlinear fluids in two dimensions—stationary, periodic problem.Commentat. Math. Univ. Carolinae 38 (1997), 681–695.
Reference: [11] D. K. Lilly: A proposed modification of the Germano subgrid-scale closure method.Phys. Fluids  A 4 (1992), 633–635. 10.1063/1.858280
Reference: [12] J. Málek, J. Nečas, M. Rokyta, and M. Růžička: Weak and Measure-Valued Solutions to Evolutionary PDEs.Chapman & Hall, London, 1996. MR 1409366
Reference: [13] P. Sagaut: Large Eddy Simulation for Incompressible Flows.Springer-Verlag, Berlin, 2001. Zbl 0964.76002, MR 1815221
Reference: [14] A. Świerczewska: Large eddy simulation. Existence of stationary solutions to the dynamical model.ZAMM, Z. Angew. Math. Mech. 85 (2005), 593–604. MR 2156086, 10.1002/zamm.200410200
.

Files

Files Size Format View
AplMat_51-2006-6_7.pdf 339.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo