Previous |  Up |  Next

Article

Title: Stationary Schrödinger equations governing electronic states of quantum dots in the presence of spin-orbit splitting (English)
Author: Betcke, Marta M.
Author: Voss, Heinrich
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 52
Issue: 3
Year: 2007
Pages: 267-284
Summary lang: English
.
Category: math
.
Summary: In this work we derive a pair of nonlinear eigenvalue problems corresponding to the one-band effective Hamiltonian accounting for the spin-orbit interaction governing the electronic states of a quantum dot. We show that the pair of nonlinear problems allows for the minmax characterization of its eigenvalues under certain conditions which are satisfied for our example of a cylindrical quantum dot and the common InAs/GaAs heterojunction. Exploiting the minmax property we devise an efficient iterative projection method simultaneously handling the pair of nonlinear problems and thereby saving about 25 % of the computation time as compared to the Nonlinear Arnoldi method applied to each of the problems separately. (English)
Keyword: quantum dot
Keyword: nonlinear eigenvalue problem
Keyword: minmax characterization
Keyword: iterative projection method
Keyword: electronic state
Keyword: spin orbit interaction
MSC: 65F15
MSC: 65F50
MSC: 65H17
MSC: 81Q10
idZBL: Zbl 1164.65412
idMR: MR2316156
DOI: 10.1007/s10492-007-0014-5
.
Date available: 2009-09-22T18:29:44Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134675
.
Reference: [1] I. Babuška, J. Osborn: Eigenvalue problems.In: Handbook of Numerical Analysis, Vol. II, P. G.  Ciarlet, J.-L.  Lions (eds.), North Holland, Amsterdam, 1991, pp. 641–787. MR 1115240
Reference: [2] G. Bastard: Wave Mechanics Applied to Semiconductor Heterostructures.Les editions de physique, Les Ulis Cedex, 1988.
Reference: [3] M. Betcke: Iterative projection methods for symmetric nonlinear eigenvalue problems with applications.In preparation.
Reference: [4] T. Betcke, H. Voss: A Jacobi-Davidson-type projection method for nonlinear eigenvalue problems.Future Generation Computer Systems 20 (2004), 363–372. MR 2213179, 10.1016/j.future.2003.07.003
Reference: [5] S. L.  Chuang: Physics of Optoelectronic Devices.John Wiley & Sons, New York, 1995.
Reference: [6] E. A.  de Andrada e Silva, G. C.  La Rocca, and F. Bassani: Spin-split subbands and magneto-oscillations in  III–V asymmetric heterostructures.Phys. Rev.  B 50 (1994), 8523–8533. 10.1103/PhysRevB.50.8523
Reference: [7] : FEMLAB, Version  3.1.COMSOL, Inc., Burlington, 2004.
Reference: [8] E. O.  Kane: The $k \cdot p$ method.In: Semiconductors and Semimetals. Physics of III–V  Compounds, Vol 1, R. K.  Willardson, A. C.  Beer (eds.), Academic Press, , 1966, pp. 75–100.
Reference: [9] Y. Li, O. Voskoboynikov, C. P.  Lee, S. M.  Sze, and O. Tretyak: Electron energy state spin-splitting in 3d  cylindrical semiconductor quantum dots.Eur. Phys.  J. B 28 (2002), 475–481. 10.1140/epjb/e2002-00250-6
Reference: [10] Y. Li, O. Voskoboynikov, J.-L.  Liu, C. P.  Lee, and S. M.  Sze: Spin dependent boundary conditions and spin splitting in cylindrical quantum dots.In: Techn. Proc. of Internat. Conference on Modeling and Simulation of Microsystems, 2001, pp. 562–565.
Reference: [11] J. M.  Luttinger, W. Kohn: Motion of electrons and holes in perturbed periodic fields.Phys. Rev. 97 (1954), 869–883. 10.1103/PhysRev.97.869
Reference: [12] A.  Neumaier: Residual inverse iteration for the nonlinear eigenvalue problem.SIAM J.  Numer. Anal. 22 (1985), 914–923. Zbl 0594.65026, MR 0799120, 10.1137/0722055
Reference: [13] B. Opic, A. Kufner: Hardy-Type Inequalities. Pitman Research Notes in Mathematics Vol.  219.Longman Scientific & Technical, Harlow, 1990. MR 1069756
Reference: [14] T. Schäpers, G. Engels, J. Lange, T. Klocke, M. Hollfelder, and H. Lüth: Effect of the heterointerface on the spin splitting in the modulation doped In$_{x}$Ga$_{1-x}$As/InP quantum wells for $B\rightarrow 0$.J. Appl. Phys. 83 (1998), 4324–4333.
Reference: [15] O. Voskoboynikov, O. Bauga, C. P.  Lee, and E. Tretyak: Magnetic properties of parabolic quantum dots in the presence of the spin-orbit interaction.J.  Appl. Phys. 94 (2003), 5891–5895. 10.1063/1.1614426
Reference: [16] O. Voskoboynikov, C. P.  Lee, and E. Tretyak: Spin-orbit energy state splitting in semiconductor cylindrical and spherical quantum dots.Phys. Stat. Sol. 226 (2001), 175–184. 10.1002/1521-3951(200107)226:1<175::AID-PSSB175>3.0.CO;2-I
Reference: [17] O. Voskoboynikov, C. P.  Lee, and E. Tretyak: Spin-orbit splitting in semiconductor quantum dots with a parabolic confinement potential.Phys. Rev.  B 63 (2001), 165306-1–165306-6. 10.1103/PhysRevB.63.165306
Reference: [18] H. Voss: Initializing iterative projection methods for rational symmetric eigenproblems.In: Online Proceedings of the Dagstuhl Seminar Theoretical and Computational Aspects of Matrix Algorithms, Schloss Dagstuhl, 2003ftp://ftp.dagstuhl.de/pub/Proceedings/03/03421/03421.VoszHeinrich.Other.pdf, 2003.
Reference: [19] H. Voss: An Arnoldi method for nonlinear eigenvalue problems.BIT 44 (2004), 387–401. Zbl 1066.65059, MR 2093512, 10.1023/B:BITN.0000039424.56697.8b
Reference: [20] H. Voss: A rational eigenvalue problem governing relevant energy states of a quantum dots.J.  Comput. Phys. 217 (2006), 824–833. MR 2260626
Reference: [21] H. Voss, B. Werner: A minimax principle for nonlinear eigenvalue problems with applications to nonoverdamped systems.Math. Methods Appl. Sci. 4 (1982), 415–424. MR 0669135, 10.1002/mma.1670040126
.

Files

Files Size Format View
AplMat_52-2007-3_6.pdf 427.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo