Previous |  Up |  Next

Article

Title: Simplicial finite elements in higher dimensions (English)
Author: Brandts, Jan
Author: Korotov, Sergey
Author: Křížek, Michal
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 52
Issue: 3
Year: 2007
Pages: 251-265
Summary lang: English
.
Category: math
.
Summary: Over the past fifty years, finite element methods for the approximation of solutions of partial differential equations (PDEs) have become a powerful and reliable tool. Theoretically, these methods are not restricted to PDEs formulated on physical domains up to dimension three. Although at present there does not seem to be a very high practical demand for finite element methods that use higher dimensional simplicial partitions, there are some advantages in studying the methods independent of the dimension. For instance, it provides additional insights into the structure and essence of proofs of results in one, two and three dimensions. In this survey paper we review some recent progress in this direction. (English)
Keyword: $n$-simplex
Keyword: finite element method
Keyword: superconvergence
Keyword: strengthened Cauchy-Schwarz inequality
Keyword: discrete maximum principle
MSC: 51M20
MSC: 65N12
MSC: 65N30
idZBL: Zbl 1164.65493
idMR: MR2316155
DOI: 10.1007/s10492-007-0013-6
.
Date available: 2009-09-22T18:29:38Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134674
.
Reference: [1] B.  Achchab, S.  Achchab, O.  Axelsson, and A.  Souissi: Upper bound of the constant in strengthened C.B.S.  inequality for systems of linear partial differential equations.Numer. Algorithms 32 (2003), 185–191. MR 1989366, 10.1023/A:1024058625449
Reference: [2] B.  Achchab, O.  Axelsson, A.  Laayouni, and A.  Souissi: Strengthened Cauchy-Bunyakowski-Schwarz inequality for a three-dimensional elasticity system.Numer. Linear Algebra Appl. 8 (2001), 191–205. MR 1817796, 10.1002/1099-1506(200104/05)8:3<191::AID-NLA229>3.0.CO;2-7
Reference: [3] D. N.  Arnold, R.  Falk, and R.  Winther: Finite element exterior calculus.Acta Numer. 15 (2006), 1–135. MR 2269741, 10.1017/S0962492906210018
Reference: [4] O.  Axelsson: On multigrid methods of the two-level type.In: Multigrid Methods. Lecture Notes in Mathematics, Vol. 960, W. Hackbusch, U.  Trotenberg (eds.), Springer-Verlag, Berlin, 1982, pp. 352–367. Zbl 0505.65040, MR 0685778
Reference: [5] O.  Axelsson, R.  Blaheta: Two simple derivations of universal bounds for the CBS  inequality constant.Appl. Math. 49 (2004), 57–72. MR 2032148, 10.1023/B:APOM.0000024520.06175.8b
Reference: [6] R.  Blaheta: Nested tetrahedral grids and strengthened CBS  inequality.Numer. Linear Algebra Appl. 10 (2003), 619–637. MR 2030627, 10.1002/nla.340
Reference: [7] R.  Blaheta, S.  Margenov, and M.  Neytcheva: Uniform estimates of the constant in the strengthened CBS  inequality for anisotropic non-conforming FEM systems.Numer. Linear Algebra Appl. 11 (2004), 309–326. MR 2057704, 10.1002/nla.350
Reference: [8] D.  Braess: Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics, 2nd edition.Cambridge University Press, Cambridge, 2001, pp. 309–326. MR 1827293
Reference: [9] J. H.  Brandts, S.  Korotov, and M.  Křížek: The strengthened Cauchy-Bunyakowski-Schwarz inequality for $n$-simplicial linear finite elements.In: Springer Lecture Notes in Computer Science, Vol. 3401, Springer-Verlag, Berlin, 2005, pp. 203–210.
Reference: [10] J. H.  Brandts, S.  Korotov, and M.  Křížek: Survey of discrete maximum principles for linear elliptic and parabolic problems.In: Proc. Conf. ECCOMAS  2004, P.  Neittaanmäki et al. (eds.), Univ. of Jyväskylä, 2004, pp. 1–19.
Reference: [11] J. H.  Brandts, S.  Korotov, and M.  Křížek: Dissection of the path-simplex in  $\mathbb{R}^n$ into $n$  path-subsimplices.Linear Algebra Appl. 421 (2007), 382–393. MR 2294350
Reference: [12] J. H.  Brandts, M.  Křížek: Gradient superconvergence on uniform simplicial partitions of polytopes.IMA  J.  Numer. Anal. 23 (2003), 489–505. MR 1987941, 10.1093/imanum/23.3.489
Reference: [13] S.  Brenner, L. R.  Scott: The Mathematical Theory of Finite Element Methods. Texts in Applied Mathematics  15.Springer-Verlag, New York, 1994. MR 1278258
Reference: [14] P. Ciarlet: The Finite Element Method for Elliptic Problems.North Holland, Amsterdam, 1978. Zbl 0383.65058, MR 0520174
Reference: [15] C. M.  Chen: Optimal points of stresses for tetrahedron linear element.Nat. Sci. J.  Xiangtan Univ. 3 (1980), 16–24. (Chinese)
Reference: [16] : COMSOL, Multiphysics Version  3.3  (2006).Sweden, http://www.femlab.com.
Reference: [17] H. S. M.  Coxeter: Trisecting an orthoscheme.Comput. Math. Appl. 17 (1989), 59–71. Zbl 0706.51019, MR 0994189, 10.1016/0898-1221(89)90148-X
Reference: [18] : FEMLAB version  2.2  (2002). Multiphysics in Matlab, for use with Matlab.COMSOL, Sweden, http://www.femlab.com.
Reference: [19] H.  Fujii: Some remarks on finite element analysis of time-dependent field problems.In: Theory Pract. Finite Elem. Struct. Anal, Univ. Tokyo Press, Tokyo, 1973, pp. 91–106. Zbl 0373.65047
Reference: [20] G.  Goodsell: Pointwise superconvergence of the gradient for the linear tetrahedral element.Numer. Methods Partial Differ. Equations 10 (1994), 651–666. Zbl 0807.65112, MR 1290950, 10.1002/num.1690100511
Reference: [21] J.  Karátson, S.  Korotov: Discrete maximum principles for finite element solutions of nonlinear elliptic problems with mixed boundary conditions.Numer. Math. 99 (2005), 669–698. MR 2121074, 10.1007/s00211-004-0559-0
Reference: [22] M.  Křížek, Q.  Lin: On the diagonal dominance of stiffness matrices in  3D.East-West J.  Numer. Math. 3 (1995), 59–69. MR 1331484
Reference: [23] M.  Křížek, P. Neittaanmäki: On superconvergence techniques.Acta Appl. Math. 9 (1987), 175–198. MR 0900263, 10.1007/BF00047538
Reference: [24] : Finite Element Methods: Superconvergence, Post-processing and A  Posteriori Estimates. Proc. Conf. Univ. of Jyväskylä, 1996. Lecture Notes in Pure and Applied Mathematics, Vol. 196.M.  Křížek, P.  Neittaanmäki, and R.  Stenberg (eds.), Marcel Dekker, New York, 1998. MR 1602809
Reference: [25] J. C.  Nédélec: Mixed finite elements in  $\mathbb{R}^3$.Numer. Math. 35 (1980), 315–341. 10.1007/BF01396415
Reference: [26] J. C.  Nédélec: A new family of mixed finite elements in  $\mathbb{R}^3$.Numer. Math. 50 (1986), 57–81. MR 0864305, 10.1007/BF01389668
Reference: [27] L. A.  Oganesjan, L. A.  Ruhovets: Study of the rate of convergence of variational difference schemes for second-order elliptic equations in a two-dimensional field with a smooth boundary.Zh. Vychisl. Mat. Mat. Fiz. 9 (1969), 1102–1120. MR 0295599
Reference: [28] V.  Ruas Santos: On the strong maximum principle for some piecewise linear finite element approximate problems of non-positive type.J.  Fac. Sci., Univ. Tokyo, Sect.  IA Math. 29 (1982), 473–491. Zbl 0488.65052, MR 0672072
Reference: [29] R. P.  Stevenson: An optimal adaptive finite element method.SIAM J.  Numer. Anal. 42 (2005), 2188–2217. Zbl 1081.65112, MR 2139244, 10.1137/S0036142903425082
Reference: [30] P.  Tong: Exact solutions of certain problems by finite-element method.AIAA J. 7 (1969), 178–180. 10.2514/3.5067
.

Files

Files Size Format View
AplMat_52-2007-3_5.pdf 365.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo