Previous |  Up |  Next

Article

Title: Remark on stabilization of tree-shaped networks of strings (English)
Author: Ammari, Kaïs
Author: Jellouli, Mohamed
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 52
Issue: 4
Year: 2007
Pages: 327-343
Summary lang: English
.
Category: math
.
Summary: We consider a tree-shaped network of vibrating elastic strings, with feedback acting on the root of the tree. Using the d’Alembert representation formula, we show that the input-output map is bounded, i.e. this system is a well-posed system in the sense of G. Weiss (Trans. Am. Math. Soc. 342 (1994), 827–854). As a consequence we prove that the strings networks are not exponentially stable in the energy space. Moreover, we give explicit polynomial decay estimates valid for regular initial data. (English)
Keyword: networks of strings
Keyword: input-output map
Keyword: well-posed system
MSC: 35B37
MSC: 93B07
MSC: 93D15
idZBL: Zbl 1164.93315
idMR: MR2324731
DOI: 10.1007/s10492-007-0018-1
.
Date available: 2009-09-22T18:30:11Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134679
.
Reference: [1] K.  Ammari, M.  Jellouli: Stabilization of star-shaped networks of strings.Differ. Integral Equations 17 (2004), 1395–1410. MR 2100033
Reference: [2] K.  Ammari, M.  Jellouli, and M.  Khenissi: Stabilization of generic trees of strings.J.  Dyn. Control Syst. 11 (2005), 177–193. MR 2131807, 10.1007/s10883-005-4169-7
Reference: [3] K.  Ammari, M.  Tucsnak: Stabilization of second order evolution equations by a class of unbounded feedbacks.ESAIM, Control Optim. Calc. Var. 6 (2001), 361–386. MR 1836048, 10.1051/cocv:2001114
Reference: [4] J.  von Below: Classical solvability of linear parabolic equations in networks.J.  Differ. Equations 52 (1988), 316–337. MR 0932369
Reference: [5] R.  Dáger: Observation and control of vibrations in tree-shaped networks of strings.SIAM.  J. Control Optim. 43 (2004), 590–623. Zbl 1083.93022, MR 2086175, 10.1137/S0363012903421844
Reference: [6] R.  Dáger, E.  Zuazua: Wave propagation, observation and control in $1$-$d$ flexible multi-structures.Mathématiques et Applications, Vol.  50, Springer-Verlag, Berlin, 2006. MR 2169126, 10.1007/3-540-37726-3
Reference: [7] R.  Dáger, E.  Zuazua: Controllability of star-shaped networks of strings.C.  R.  Acad. Sci. Paris 332 (2001), 621–626. MR 1841896, 10.1016/S0764-4442(01)01876-6
Reference: [8] R.  Dáger, E.  Zuazua: Controllability of tree-shaped networks of vibrating strings.C.  R.  Acad. Sci. Paris 332 (2001), 1087–1092. MR 1847485, 10.1016/S0764-4442(01)01942-5
Reference: [9] J.  Lagnese, G.  Leugering, and E. J. P. G.  Schmidt: Modeling, Analysis of Dynamic Elastic Multi-link Structures.Birkhäuser-Verlag, Boston-Basel-Berlin, 1994. MR 1279380
Reference: [10] I.  Lasiecka, J.-L.  Lions, and R.  Triggiani: Nonhomogeneous boundary value problems for second-order hyperbolic generators.J.  Math. Pures Appl. 65 (1986), 92–149. MR 0867669
Reference: [11] J.-L.  Lions, E.  Magenes: Problèmes aux limites non homogènes et applications.Dunod, Paris, 1968.
Reference: [12] J. L.  Lions: Contrôle des systèmes distribués singuliers.Gauthier-Villars, Paris, 1983. Zbl 0514.93001, MR 0712486
Reference: [13] A.  Pazy: Semigroups of Linear Operators and Applications to Partial Differential Equations.Springer-Verlag, New York, 1983. Zbl 0516.47023, MR 0710486
Reference: [14] E. J. P. G.  Schmidt: On the modelling and exact controllability of networks of vibrating strings.SIAM J.  Control Optim. 30 (1992), 229–245. Zbl 0755.35008, MR 1145715, 10.1137/0330015
Reference: [15] G.  Weiss: Transfer functions of regular linear systems. Part I. Characterizations of regularity.Trans. Am. Math. Soc. 342 (1994), 827–854. MR 1179402
.

Files

Files Size Format View
AplMat_52-2007-4_4.pdf 380.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo