Title:
|
Remark on stabilization of tree-shaped networks of strings (English) |
Author:
|
Ammari, Kaïs |
Author:
|
Jellouli, Mohamed |
Language:
|
English |
Journal:
|
Applications of Mathematics |
ISSN:
|
0862-7940 (print) |
ISSN:
|
1572-9109 (online) |
Volume:
|
52 |
Issue:
|
4 |
Year:
|
2007 |
Pages:
|
327-343 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We consider a tree-shaped network of vibrating elastic strings, with feedback acting on the root of the tree. Using the d’Alembert representation formula, we show that the input-output map is bounded, i.e. this system is a well-posed system in the sense of G. Weiss (Trans. Am. Math. Soc. 342 (1994), 827–854). As a consequence we prove that the strings networks are not exponentially stable in the energy space. Moreover, we give explicit polynomial decay estimates valid for regular initial data. (English) |
Keyword:
|
networks of strings |
Keyword:
|
input-output map |
Keyword:
|
well-posed system |
MSC:
|
35B37 |
MSC:
|
93B07 |
MSC:
|
93D15 |
idZBL:
|
Zbl 1164.93315 |
idMR:
|
MR2324731 |
DOI:
|
10.1007/s10492-007-0018-1 |
. |
Date available:
|
2009-09-22T18:30:11Z |
Last updated:
|
2020-07-02 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/134679 |
. |
Reference:
|
[1] K. Ammari, M. Jellouli: Stabilization of star-shaped networks of strings.Differ. Integral Equations 17 (2004), 1395–1410. MR 2100033 |
Reference:
|
[2] K. Ammari, M. Jellouli, and M. Khenissi: Stabilization of generic trees of strings.J. Dyn. Control Syst. 11 (2005), 177–193. MR 2131807, 10.1007/s10883-005-4169-7 |
Reference:
|
[3] K. Ammari, M. Tucsnak: Stabilization of second order evolution equations by a class of unbounded feedbacks.ESAIM, Control Optim. Calc. Var. 6 (2001), 361–386. MR 1836048, 10.1051/cocv:2001114 |
Reference:
|
[4] J. von Below: Classical solvability of linear parabolic equations in networks.J. Differ. Equations 52 (1988), 316–337. MR 0932369 |
Reference:
|
[5] R. Dáger: Observation and control of vibrations in tree-shaped networks of strings.SIAM. J. Control Optim. 43 (2004), 590–623. Zbl 1083.93022, MR 2086175, 10.1137/S0363012903421844 |
Reference:
|
[6] R. Dáger, E. Zuazua: Wave propagation, observation and control in $1$-$d$ flexible multi-structures.Mathématiques et Applications, Vol. 50, Springer-Verlag, Berlin, 2006. MR 2169126, 10.1007/3-540-37726-3 |
Reference:
|
[7] R. Dáger, E. Zuazua: Controllability of star-shaped networks of strings.C. R. Acad. Sci. Paris 332 (2001), 621–626. MR 1841896, 10.1016/S0764-4442(01)01876-6 |
Reference:
|
[8] R. Dáger, E. Zuazua: Controllability of tree-shaped networks of vibrating strings.C. R. Acad. Sci. Paris 332 (2001), 1087–1092. MR 1847485, 10.1016/S0764-4442(01)01942-5 |
Reference:
|
[9] J. Lagnese, G. Leugering, and E. J. P. G. Schmidt: Modeling, Analysis of Dynamic Elastic Multi-link Structures.Birkhäuser-Verlag, Boston-Basel-Berlin, 1994. MR 1279380 |
Reference:
|
[10] I. Lasiecka, J.-L. Lions, and R. Triggiani: Nonhomogeneous boundary value problems for second-order hyperbolic generators.J. Math. Pures Appl. 65 (1986), 92–149. MR 0867669 |
Reference:
|
[11] J.-L. Lions, E. Magenes: Problèmes aux limites non homogènes et applications.Dunod, Paris, 1968. |
Reference:
|
[12] J. L. Lions: Contrôle des systèmes distribués singuliers.Gauthier-Villars, Paris, 1983. Zbl 0514.93001, MR 0712486 |
Reference:
|
[13] A. Pazy: Semigroups of Linear Operators and Applications to Partial Differential Equations.Springer-Verlag, New York, 1983. Zbl 0516.47023, MR 0710486 |
Reference:
|
[14] E. J. P. G. Schmidt: On the modelling and exact controllability of networks of vibrating strings.SIAM J. Control Optim. 30 (1992), 229–245. Zbl 0755.35008, MR 1145715, 10.1137/0330015 |
Reference:
|
[15] G. Weiss: Transfer functions of regular linear systems. Part I. Characterizations of regularity.Trans. Am. Math. Soc. 342 (1994), 827–854. MR 1179402 |
. |