Previous |  Up |  Next

Article

Title: Existence of minimizers and necessary conditions in set-valued optimization with equilibrium constraints (English)
Author: Bao, Truong Q.
Author: Mordukhovich, Boris S.
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 52
Issue: 6
Year: 2007
Pages: 453-472
Summary lang: English
.
Category: math
.
Summary: In this paper we study set-valued optimization problems with equilibrium constraints (SOPECs) described by parametric generalized equations in the form \[ 0\in G(x)+Q(x), \] where both $G$ and $Q$ are set-valued mappings between infinite-dimensional spaces. Such models particularly arise from certain optimization-related problems governed by set-valued variational inequalities and first-order optimality conditions in nondifferentiable programming. We establish general results on the existence of optimal solutions under appropriate assumptions of the Palais-Smale type and then derive necessary conditions for optimality in the models under consideration by using advanced tools of variational analysis and generalized differentiation. (English)
Keyword: variational analysis
Keyword: nonsmooth and set-valued optimization
Keyword: equilibrium constraints
Keyword: existence of optimal solutions
Keyword: necessary optimality conditions
Keyword: generalized differentiation
MSC: 49J52
MSC: 49J53
MSC: 90C29
MSC: 90C30
MSC: 90C33
idZBL: Zbl 1164.49306
idMR: MR2357575
DOI: 10.1007/s10492-007-0027-0
.
Date available: 2009-09-22T18:31:21Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134690
.
Reference: [1] T. Q.  Bao, P.  Gupta, B. S.  Mordukhovich: Necessary conditions in multiobjective optimization with equilibrium constraints.J.  Optim. Theory Appl. 135 (2007), . MR 2346530
Reference: [2] T. Q.  Bao, B. S.  Mordukhovich: Variational principles for set-valued mappings with applications to multiobjective optimization.Control Cybern. 36 (2007), 531–562. MR 2376038
Reference: [3] J. M.  Borwein, Q. J.  Zhu: Techniques of Variational Analysis. CMS Books in Math., Vol. 20.Springer-Verlag, New York, 2005. MR 2144010
Reference: [4] F.  Facchinei, J.-S.  Pang: Finite-Dimensional Variational Inequalities and Complementary Problems, Vol. I, Vol.  II.Springer-Verlag, New York, 2003. MR 1955648
Reference: [5] J.  Jahn: Vector Optimization. Theory, Applications and Extensions. Series Oper. Res.Springer-Verlag, Berlin, 2004. MR 2058695
Reference: [6] Z.-Q.  Luo, J.-S.  Pang, and D.  Ralph: Mathematical Programs with Equilibrium Constraints.Cambridge University Press, Cambridge, 1997. MR 1419501
Reference: [7] B. S.  Mordukhovich: Variational Analysis and Generalized Differentiation. I. Basic Theory. Grundlehren Series (Fundamental Principles of Mathematical Sciences), Vol. 330.Springer-Verlag, Berlin, 2006. MR 2191744
Reference: [8] B. S.  Mordukhovich: Variational Analysis and Generalized Differentiation. II. Applications. Grundlehren Series (Fundamental Principles of Mathematical Sciences), Vol. 331.Springer-Verlag, Berlin, 2006. MR 2191745
Reference: [9] B. S.  Mordukhovich, J. V.  Outrata: On second-order subdifferentials and their applications.SIAM J. Optim. 12 (2001), 139–169. MR 1870589, 10.1137/S1052623400377153
Reference: [10] B. S.  Mordukhovich, J. V.  Outrata: Coderivative analysis of quasivariational inequalities with applications to stability and optimization.SIAM J.  Optim (to appear). MR 2338444
Reference: [11] B. S.  Mordukhovich, J. V.  Outrata, and M.  Červinka: Equilibrium problems with complementarity constraints: case study with applications to oligopolistic markets.Optimization (to appear). MR 2344087
Reference: [12] J. V.  Outrata: Optimality conditions for a class of mathematical programs with equilibrium constraints.Math. Oper. Res. 24 (1999), 627–644. Zbl 1039.90088, MR 1854246, 10.1287/moor.24.3.627
Reference: [13] J. V.  Outrata: A generalized mathematical program with equilibrium constraints.SIAM J.  Control Optim. 38 (2000), 1623–1638. Zbl 0968.49012, MR 1766433, 10.1137/S0363012999352911
Reference: [14] J. V.  Outrata: A note on a class of equilibrium problems with equilibrium constraints.Kybernetika 40 (2004), 585–594. Zbl 1249.49017, MR 2120998
Reference: [15] J. V.  Outrata, M.  Kočvara, and J.  Zowe:: Nonsmooth Approach to Optimization Problems with Equilibrium Constraints.Kluwer Academic Publishers, Dordrecht, 1998. MR 1641213
Reference: [16] S. M.  Robinson: Generalized equations and their solutions. I. Basic theory.Math. Program. Study 10 (1979), 128–141. Zbl 0404.90093, MR 0527064, 10.1007/BFb0120850
Reference: [17] R. T.  Rockafellar, R. J.-B.  Wets: Variational Analysis. Grundlehren Series (Fundamental Principles of Mathematical Sciences), Vol. 317.Springer-Verlag, Berlin, 1998. MR 1491362
Reference: [18] X. Y.  Zheng, K.  F.  Ng: The Lagrange multiplier rule for multifunctions in Banach spaces.SIAM J.  Optim. 17 (2006), 1154–1175. Zbl 1127.49014, MR 2274507, 10.1137/060651860
.

Files

Files Size Format View
AplMat_52-2007-6_2.pdf 350.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo