Title:
|
Existence of minimizers and necessary conditions in set-valued optimization with equilibrium constraints (English) |
Author:
|
Bao, Truong Q. |
Author:
|
Mordukhovich, Boris S. |
Language:
|
English |
Journal:
|
Applications of Mathematics |
ISSN:
|
0862-7940 (print) |
ISSN:
|
1572-9109 (online) |
Volume:
|
52 |
Issue:
|
6 |
Year:
|
2007 |
Pages:
|
453-472 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper we study set-valued optimization problems with equilibrium constraints (SOPECs) described by parametric generalized equations in the form \[ 0\in G(x)+Q(x), \] where both $G$ and $Q$ are set-valued mappings between infinite-dimensional spaces. Such models particularly arise from certain optimization-related problems governed by set-valued variational inequalities and first-order optimality conditions in nondifferentiable programming. We establish general results on the existence of optimal solutions under appropriate assumptions of the Palais-Smale type and then derive necessary conditions for optimality in the models under consideration by using advanced tools of variational analysis and generalized differentiation. (English) |
Keyword:
|
variational analysis |
Keyword:
|
nonsmooth and set-valued optimization |
Keyword:
|
equilibrium constraints |
Keyword:
|
existence of optimal solutions |
Keyword:
|
necessary optimality conditions |
Keyword:
|
generalized differentiation |
MSC:
|
49J52 |
MSC:
|
49J53 |
MSC:
|
90C29 |
MSC:
|
90C30 |
MSC:
|
90C33 |
idZBL:
|
Zbl 1164.49306 |
idMR:
|
MR2357575 |
DOI:
|
10.1007/s10492-007-0027-0 |
. |
Date available:
|
2009-09-22T18:31:21Z |
Last updated:
|
2020-07-02 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/134690 |
. |
Reference:
|
[1] T. Q. Bao, P. Gupta, B. S. Mordukhovich: Necessary conditions in multiobjective optimization with equilibrium constraints.J. Optim. Theory Appl. 135 (2007), . MR 2346530 |
Reference:
|
[2] T. Q. Bao, B. S. Mordukhovich: Variational principles for set-valued mappings with applications to multiobjective optimization.Control Cybern. 36 (2007), 531–562. MR 2376038 |
Reference:
|
[3] J. M. Borwein, Q. J. Zhu: Techniques of Variational Analysis. CMS Books in Math., Vol. 20.Springer-Verlag, New York, 2005. MR 2144010 |
Reference:
|
[4] F. Facchinei, J.-S. Pang: Finite-Dimensional Variational Inequalities and Complementary Problems, Vol. I, Vol. II.Springer-Verlag, New York, 2003. MR 1955648 |
Reference:
|
[5] J. Jahn: Vector Optimization. Theory, Applications and Extensions. Series Oper. Res.Springer-Verlag, Berlin, 2004. MR 2058695 |
Reference:
|
[6] Z.-Q. Luo, J.-S. Pang, and D. Ralph: Mathematical Programs with Equilibrium Constraints.Cambridge University Press, Cambridge, 1997. MR 1419501 |
Reference:
|
[7] B. S. Mordukhovich: Variational Analysis and Generalized Differentiation. I. Basic Theory. Grundlehren Series (Fundamental Principles of Mathematical Sciences), Vol. 330.Springer-Verlag, Berlin, 2006. MR 2191744 |
Reference:
|
[8] B. S. Mordukhovich: Variational Analysis and Generalized Differentiation. II. Applications. Grundlehren Series (Fundamental Principles of Mathematical Sciences), Vol. 331.Springer-Verlag, Berlin, 2006. MR 2191745 |
Reference:
|
[9] B. S. Mordukhovich, J. V. Outrata: On second-order subdifferentials and their applications.SIAM J. Optim. 12 (2001), 139–169. MR 1870589, 10.1137/S1052623400377153 |
Reference:
|
[10] B. S. Mordukhovich, J. V. Outrata: Coderivative analysis of quasivariational inequalities with applications to stability and optimization.SIAM J. Optim (to appear). MR 2338444 |
Reference:
|
[11] B. S. Mordukhovich, J. V. Outrata, and M. Červinka: Equilibrium problems with complementarity constraints: case study with applications to oligopolistic markets.Optimization (to appear). MR 2344087 |
Reference:
|
[12] J. V. Outrata: Optimality conditions for a class of mathematical programs with equilibrium constraints.Math. Oper. Res. 24 (1999), 627–644. Zbl 1039.90088, MR 1854246, 10.1287/moor.24.3.627 |
Reference:
|
[13] J. V. Outrata: A generalized mathematical program with equilibrium constraints.SIAM J. Control Optim. 38 (2000), 1623–1638. Zbl 0968.49012, MR 1766433, 10.1137/S0363012999352911 |
Reference:
|
[14] J. V. Outrata: A note on a class of equilibrium problems with equilibrium constraints.Kybernetika 40 (2004), 585–594. Zbl 1249.49017, MR 2120998 |
Reference:
|
[15] J. V. Outrata, M. Kočvara, and J. Zowe:: Nonsmooth Approach to Optimization Problems with Equilibrium Constraints.Kluwer Academic Publishers, Dordrecht, 1998. MR 1641213 |
Reference:
|
[16] S. M. Robinson: Generalized equations and their solutions. I. Basic theory.Math. Program. Study 10 (1979), 128–141. Zbl 0404.90093, MR 0527064, 10.1007/BFb0120850 |
Reference:
|
[17] R. T. Rockafellar, R. J.-B. Wets: Variational Analysis. Grundlehren Series (Fundamental Principles of Mathematical Sciences), Vol. 317.Springer-Verlag, Berlin, 1998. MR 1491362 |
Reference:
|
[18] X. Y. Zheng, K. F. Ng: The Lagrange multiplier rule for multifunctions in Banach spaces.SIAM J. Optim. 17 (2006), 1154–1175. Zbl 1127.49014, MR 2274507, 10.1137/060651860 |
. |