Previous |  Up |  Next

Article

Title: On $M$-stationary points for a stochastic equilibrium problem under equilibrium constraints in electricity spot market modeling (English)
Author: Henrion, René
Author: Römisch, Werner
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 52
Issue: 6
Year: 2007
Pages: 473-494
Summary lang: English
.
Category: math
.
Summary: Modeling several competitive leaders and followers acting in an electricity market leads to coupled systems of mathematical programs with equilibrium constraints, called equilibrium problems with equilibrium constraints (EPECs). We consider a simplified model for competition in electricity markets under uncertainty of demand in an electricity network as a (stochastic) multi-leader-follower game. First order necessary conditions are developed for the corresponding stochastic EPEC based on a result of Outrata. For applying the general result an explicit representation of the co-derivative of the normal cone mapping to a polyhedron is derived. Then the co-derivative formula is used for verifying constraint qualifications and for identifying $M$-stationary solutions of the stochastic EPEC if the demand is represented by a finite number of scenarios. (English)
Keyword: electricity markets
Keyword: bidding
Keyword: noncooperative games
Keyword: equilibrium constraint
Keyword: EPEC
Keyword: optimality condition
Keyword: co-derivative
Keyword: random demand
MSC: 90C15
MSC: 91B26
MSC: 91B52
idZBL: Zbl 1164.90379
idMR: MR2357576
DOI: 10.1007/s10492-007-0028-z
.
Date available: 2009-09-22T18:31:28Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134691
.
Reference: [1] B.  Blaesig: Risikomanagement in der Stromerzeugungs- und Handelsplanung. Aachener Beiträge zur Energieversorgung, Band  113.Klinkenberg, Aachen, 2007.
Reference: [2] A. L.  Dontchev, R. T.  Rockafellar: Characterizations of strong regularity for variational inequalities over polyhedral convex sets.SIAM J.  Optim. 7 (1996), 1087–1105. MR 1416530, 10.1137/S1052623495284029
Reference: [3] A.  Eichhorn, W.  Römisch: Mean-risk optimization models for electricity portfolio management.Proceedings of the 9th International Conference on Probabilistic Methods Applied to Power Systems (PMAPS 2006), Stockholm, , , 2006.
Reference: [4] J. F.  Escobar, A.  Jofre: Oligopolistic competition in electricity spot markets, Dec. 2005.Available at http://ssrn.com/abstract=878762.
Reference: [5] F.  Facchinei, J.-S.  Pang: Finite-dimensional Variational Inequalities and Complementarity Problems, Vol.  I and II.Springer-Verlag, New York, 2003. MR 1955648
Reference: [6] R.  Fletcher, S.  Leyffer, D.  Ralph, and S.  Scholtes: Local convergence of SQP  methods for mathematical programs with equilibrium constraints.SIAM J.  Optim. 17 (2006), 259–286. MR 2219153, 10.1137/S1052623402407382
Reference: [7] R.  Garcia-Bertrand, A. J.  Conejo, and S.  Gabriel: Electricity market near-equilibrium under locational marginal pricing and minimum profit conditions.Eur. J. Oper. Res. 174 (2006), 457–479. 10.1016/j.ejor.2005.03.037
Reference: [8] B. F.  Hobbs, J.-S.  Pang: Nash-Cournot equilibria in electric power markets with piecewise linear demand functions and joint constraints.Oper. Res. 55 (2007), 113–127. MR 2290891, 10.1287/opre.1060.0342
Reference: [9] B.  F.  Hobbs, C.  Metzler, and J.-S. Pang: Strategic gaming analysis for electric power networks: An MPEC  approach.IEEE Power Engineering Transactions 15 (2000), 638–645. 10.1109/59.867153
Reference: [10] X.  Hu, D.  Ralph: Using EPECs to model bilevel games in restructured electricity markets with locational prices.Optimization Online, 2006 (www.optimization-online.org). MR 2360950
Reference: [11] X.  Hu, D.  Ralph, E. K.  Ralph, P.  Bardsley, and M. C. Ferris: Electricity generation with looped transmission networks: Bidding to an ISO.Research Paper No.  2004/16, Judge Institute of Management, Cambridge University, 2004.
Reference: [12] M.  Kočvara, J. V.  Outrata: Optimization problems with equilibrium constraints and their numerical solution.Math. Program.  B 101 (2004), 119–149. MR 2085261, 10.1007/s10107-004-0539-2
Reference: [13] S.  Leyffer, T. S.  Munson: Solving multi-leader-follower games. Preprint ANL/MCS-P1243-0405, Argonne National Laboratory, Mathematics and Computer Science Division, April 2005..
Reference: [14] Z.-Q.  Luo, J.-S.  Pang, and D.  Ralph: Mathematical Programs with Equilibrium Constraints.Cambridge University Press, Cambridge, 1997. MR 1419501
Reference: [15] B. S.  Mordukhovich: Variational Analysis and Generalized Differentiation. Vol.  1: Basic Theory, Vol.  2: Applications.Springer-Verlag, Berlin, 2006. MR 2191745
Reference: [16] B. S.  Mordukhovich, J. V.  Outrata: Coderivative analysis of quasi-variational inequalities with applications to stability and optimization.SIAM J.  Optim. 18 (2007), 389–412. MR 2338444, 10.1137/060665609
Reference: [17] J. V.  Outrata: A note on a class of equilibrium problems with equilibrium constraints.Cybernetica 40 (2004), 585–594. Zbl 1249.49017, MR 2120998
Reference: [18] J. V.  Outrata: On constrained qualifications for mathematical programs with mixed complementarity constraints.Complementarity: Applications, Algorithms and Extensions, M. C.  Ferris et al. (eds.), Kluwer, Dordrecht, 2001, pp. 253–272. MR 1818625
Reference: [19] J. V.  Outrata, M.  Kočvara, and J.  Zowe: Nonsmooth Approach to Optimization Problems with Equilibrium Constraints.Kluwer, Dordrecht, 1998.
Reference: [20] J.-S.  Pang, M.  Fukushima: Quasi-variational inequalities, generalized Nash equilibria, and multi-leader-follower games.Comput. Manag. Sci. 1 (2005), 21–56. MR 2164953, 10.1007/s10287-004-0010-0
Reference: [21] M. V.  Pereira, S.  Granville, M. H. C.  Fampa, R.  Dix, and L. A.  Barroso: Strategic bidding under uncertainty: A binary expansion approach.IEEE Transactions on Power Systems 20 (2005), 180–188. 10.1109/TPWRS.2004.840397
Reference: [22] D.  Ralph, Y.  Smeers: EPECs as models for electricity markets.Power Systems Conference and Exposition (PSCE), Atlanta, 2006, , , .
Reference: [23] R. T.  Rockafellar, R. J.-B.  Wets: Variational Analysis.Springer-Verlag, Berlin, 1998. MR 1491362
Reference: [24] : Stochastic Programming. Handbooks in Operations Research and Management Science, Vol. 10.A.  Ruszczyński, A.  Shapiro (eds.), Elsevier, Amsterdam, 2003. MR 2051791
Reference: [25] H.  Scheel, S.  Scholtes: Mathematical programs with equilibrium constraints: Stationarity, optimality and sensitivity.Math. Oper. Res. 25 (2000), 1–22. MR 1854317, 10.1287/moor.25.1.1.15213
Reference: [26] A.  Shapiro: Stochastic programming with equilibrium constraints.J. Optim. Theory Appl. 128 (2006), 221–243. Zbl 1130.90032, MR 2201897, 10.1007/s10957-005-7566-x
Reference: [27] A.  Shapiro, H.  Xu: Stochastic mathematical programs with equilibrium constraints, modeling and sample average approximation.Optimization Online 2005 (www.optimization-online.org). MR 2412074
Reference: [28] Y.  Smeers: How well can one measure market power in restructured electricity systems?.CORE Discussion Paper 2005/50 (2005), Center for Operations Research and Econometrics (CORE), Louvain.
.

Files

Files Size Format View
AplMat_52-2007-6_3.pdf 363.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo