| Title: | First- and second-order optimality conditions for mathematical programs with vanishing constraints (English) | 
| Author: | Hoheisel, Tim | 
| Author: | Kanzow, Christian | 
| Language: | English | 
| Journal: | Applications of Mathematics | 
| ISSN: | 0862-7940 (print) | 
| ISSN: | 1572-9109 (online) | 
| Volume: | 52 | 
| Issue: | 6 | 
| Year: | 2007 | 
| Pages: | 495-514 | 
| Summary lang: | English | 
| . | 
| Category: | math | 
| . | 
| Summary: | We consider a special class of optimization problems that we call Mathematical Programs with Vanishing Constraints, MPVC  for short, which serves as a unified framework for several applications in structural and topology optimization. Since an  MPVC most often violates stronger standard constraint qualification, first-order necessary optimality conditions, weaker than the standard KKT-conditions, were recently investigated in depth. This paper enlarges the set of optimality criteria by stating first-order sufficient and second-order necessary and sufficient optimality conditions for  MPVCs. (English) | 
| Keyword: | mathematical programs with vanishing constraints | 
| Keyword: | mathematical programs with equilibrium constraints | 
| Keyword: | first-order optimality conditions | 
| Keyword: | second-order optimality conditions | 
| MSC: | 90C30 | 
| MSC: | 90C33 | 
| idZBL: | Zbl 1164.90407 | 
| idMR: | MR2357577 | 
| DOI: | 10.1007/s10492-007-0029-y | 
| . | 
| Date available: | 2009-09-22T18:31:34Z | 
| Last updated: | 2020-07-02 | 
| Stable URL: | http://hdl.handle.net/10338.dmlcz/134692 | 
| . | 
| Reference: | [1] W.  Achtziger, C.  Kanzow: Mathematical programs with vanishing constraints: Optimality conditions and constraint qualifications.Math. Program (to appear). MR 2386163 | 
| Reference: | [2] M. S.  Bazaraa, H. D.  Sherali, and C. M.  Shetty: Nonlinear Programming. Theory and Algorithms. 2nd edition.John Wiley & Sons, Hoboken, 1993. MR 2218478 | 
| Reference: | [3] M. L.  Flegel, C.  Kanzow: A direct proof for $M$-stationarity under MPEC-ACQ for mathematical programs with equilibrium constraints.In: Optimization with Multivalued Mappings: Theory, Applications and Algorithms, S. Dempe, V. Kalashnikov (eds.), Springer-Verlag, New York, 2006, pp. 111–122. MR 2243539 | 
| Reference: | [4] C.  Geiger, C.  Kanzow: Theorie und Numerik restringierter Optimierungsaufgaben.Springer-Verlag, Berlin, 2002. (German) | 
| Reference: | [5] T.  Hoheisel, C.  Kanzow: On the Abadie and Guignard constraint qualification for mathematical programs with vanishing constraints.Optimization (to appear). MR 2561810 | 
| Reference: | [6] T.  Hoheisel, C.  Kanzow: Stationary conditions for mathematical programs with vanishing constraints using weak constraint qualifications.J.  Math. Anal. Appl. 337 (2008), 292–310. MR 2356071, 10.1016/j.jmaa.2007.03.087 | 
| Reference: | [7] Z.-Q.  Luo, J.-S.  Pang, and D.  Ralph: Mathematical Programs with Equilibrium Constraints.Cambridge University Press, Cambridge, 1997. MR 1419501 | 
| Reference: | [8] O. L.  Mangasarian: Nonlinear Programming.McGraw-Hill Book Company, New York, 1969. Zbl 0194.20201, MR 0252038 | 
| Reference: | [9] J. V.  Outrata: Optimality conditions for a class of mathematical programs with equilibrium constraints.Math. Oper. Res. 24 (1999), 627–644. Zbl 1039.90088, MR 1854246, 10.1287/moor.24.3.627 | 
| Reference: | [10] J. V.  Outrata, M. Kočvara, and J. Zowe: Nonsmooth Approach to Optimization Problems with Equilibrium Constraints. Nonconvex Optimization and its Applications.Kluwer, Dordrecht, 1998. | 
| Reference: | [11] H.  Scheel, S.  Scholtes: Mathematical programs with complementarity constraints: Stationarity, optimality, and sensitivity.Math. Oper. Res. 25 (2000), 1–22. MR 1854317, 10.1287/moor.25.1.1.15213 | 
| Reference: | [12] S. Scholtes: Convergence properties of a regularization scheme for mathematical programs with complementarity constraints.SIAM J. Optim. 11 (2001), 918–936. Zbl 1010.90086, MR 1855214, 10.1137/S1052623499361233 | 
| Reference: | [13] S.  Scholtes: Nonconvex structures in nonlinear programming.Oper. Res. 52 (2004), 368–383. Zbl 1165.90597, MR 2066033, 10.1287/opre.1030.0102 | 
| Reference: | [14] J. J.  Ye: Necessary and sufficient optimality conditions for mathematical programs with equilibrium constraints.J.  Math. Anal. Appl. 307 (2005), 350–369. Zbl 1112.90062, MR 2138995, 10.1016/j.jmaa.2004.10.032 | 
| . |