Previous |  Up |  Next

Article

Title: On convergence of gradient-dependent integrands (English)
Author: Kružík, Martin
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 52
Issue: 6
Year: 2007
Pages: 529-543
Summary lang: English
.
Category: math
.
Summary: We study convergence properties of $\lbrace v(\nabla u_k)\rbrace _{k\in \mathbb{N}}$ if $v\in C(\mathbb{R}^{m\times n})$, $|v(s)|\le C(1+|s|^p)$, $1<p<+\infty $, has a finite quasiconvex envelope, $u_k\rightarrow u$ weakly in $W^{1,p} (\Omega ;\mathbb{R}^m)$ and for some $g\in C(\Omega )$ it holds that $\int _\Omega g(x)v(\nabla u_k(x))\mathrm{d}x\rightarrow \int _\Omega g(x) Qv(\nabla u(x))\mathrm{d}x$ as $k\rightarrow \infty $. In particular, we give necessary and sufficient conditions for $L^1$-weak convergence of $\lbrace \det \nabla u_k\rbrace _{k\in \mathbb{N}}$ to $\det \nabla u$ if $m=n=p$. (English)
Keyword: bounded sequences of gradients
Keyword: concentrations
Keyword: oscillations
Keyword: quasiconvexity
Keyword: weak convergence
MSC: 35B05
MSC: 49J45
idZBL: Zbl 1164.49305
idMR: MR2357579
DOI: 10.1007/s10492-007-0031-4
.
Date available: 2009-09-22T18:31:46Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134694
.
Reference: [1] J. J.  Alibert, G.  Bouchitté: Non-uniform integrability and generalized Young measures.J.  Convex Anal. 4 (1997), 129–147. MR 1459885
Reference: [2] J. M.  Ball: A version of the fundamental theorem for Young measures.In: PDEs and Continuum Models of Phase Transition. Lect. Notes Phys. 344, M. Rascle, D. Serre, M. Slemrod (eds.), Springer-Verlag, Berlin, 1989, pp. 207–215. Zbl 0991.49500, MR 1036070
Reference: [3] J. M. Ball, F. Murat: $W^{1,p}$-quasiconvexity and variational problems for multiple integrals.J.  Funct. Anal. 58 (1984), 225–253. MR 0759098, 10.1016/0022-1236(84)90041-7
Reference: [4] J. M.  Ball, K.-W.  Zhang: Lower semicontinuity of multiple integrals and the biting lemma.Proc. R.  Soc. Edinb. 114  A (1990), 367–379. MR 1055554
Reference: [5] J. K.  Brooks, R. V.  Chacon: Continuity and compactness of measures.Adv. Math. 37 (1980), 16–26. MR 0585896, 10.1016/0001-8708(80)90023-7
Reference: [6] B.  Dacorogna: Direct Methods in the Calculus of Variations.Springer-Verlag, Berlin, 1989. Zbl 0703.49001, MR 0990890
Reference: [7] R. J.  DiPerna, A. J.  Majda: Oscillations and concentrations in weak solutions of the incompressible fluid equations.Commun. Math. Phys. 108 (1987), 667–689. MR 0877643, 10.1007/BF01214424
Reference: [8] N.  Dunford, J. T.  Schwartz: Linear Operators. Part  I.Interscience, New York, 1967.
Reference: [9] R.  Engelking: General Topology. 2nd  ed.PWN, Warszawa, 1976. (Polish) MR 0500779
Reference: [10] I. Fonseca: Lower semicontinuity of surface energies.Proc. R.  Soc. Edinb. 120  A (1992), 99–115. Zbl 0757.49013, MR 1149987
Reference: [11] I.  Fonseca, S.  Müller, P.  Pedregal: Analysis of concentration and oscillation effects generated by gradients.SIAM J. Math. Anal. 29 (1998), 736–756. MR 1617712, 10.1137/S0036141096306534
Reference: [12] J.  Hogan, C.  Li, A.  McIntosh, K.  Zhang: Global higher integrability of Jacobians on bounded domains.Ann. Inst. Henri Poincaré, Anal. Non Linéaire 17 C (2000), 193–217. MR 1753093, 10.1016/S0294-1449(00)00108-6
Reference: [13] A.  Kałamajska, M.  Kružík: Oscillations and concentrations in sequences of gradients.ESAIM Control Optim. Calc. Var (to appear). MR 2375752
Reference: [14] D. Kinderlehrer, P.  Pedregal: Characterization of Young measures generated by gradients.Arch. Ration. Mech. Anal. 115 (1991), 329–365. MR 1120852, 10.1007/BF00375279
Reference: [15] D.  Kinderlehrer, P.  Pedregal: Weak convergence of integrands and the Young measure representation.SIAM J.  Math. Anal. 23 (1992), 1–19. MR 1145159, 10.1137/0523001
Reference: [16] D.  Kinderlehrer, P. Pedregal: Gradient Young measures generated by sequences in Sobolev spaces.J.  Geom. Anal. 4 (1994), 59–90. MR 1274138, 10.1007/BF02921593
Reference: [17] M. Kočvara, M. Kružík, and J. V. Outrata: On the control of an evolutionary equilibrium in micromagnetics.Optimization with multivalued mappings. Springer Optim. Appl., Vol. 2, Springer-Verlag, New York, 2006, pp. 143–168. MR 2243541
Reference: [18] J.  Kristensen: Lower semicontinuity in spaces of weakly differentiable functions.Math. Ann. 313 (1999), 653–710. Zbl 0924.49012, MR 1686943, 10.1007/s002080050277
Reference: [19] M.  Kružík, T. Roubíček: On the measures of DiPerna and Majda.Math. Bohem. 122 (1997), 383–399. MR 1489400
Reference: [20] M.  Kružík, T.  Roubíček: Optimization problems with concentration and oscillation effects: Relaxation theory and numerical approximation.Numer. Funct. Anal. Optimization 20 (1999), 511–530. MR 1704958, 10.1080/01630569908816908
Reference: [21] C. B.  Morrey: Multiple Integrals in the Calculus of Variations.Springer-Verlag, Berlin, 1966. Zbl 0142.38701, MR 0202511
Reference: [22] S. Müller: Higher integrability of determinants and weak convergence in  $L^1$.J. Reine Angew. Math. 412 (1990), 20–34. MR 1078998
Reference: [23] S. Müller: Variational models for microstructure and phase transisions.Lect. Notes Math. 1713, Springer-Verlag, Berlin, 1999, pp. 85–210. MR 1731640
Reference: [24] P.  Pedregal: Parametrized Measures and Variational Principles.Birkäuser-Verlag, Basel, 1997. Zbl 0879.49017, MR 1452107
Reference: [25] T.  Roubíček: Relaxation in Optimization Theory and Variational Calculus.W.  de  Gruyter, Berlin, 1997. MR 1458067
Reference: [26] M. E. Schonbek: Convergence of solutions to nonlinear dispersive equations.Comm. Partial Differ. Equations 7 (1982), 959–1000. Zbl 0496.35058, MR 0668586, 10.1080/03605308208820242
Reference: [27] L.  Tartar: Compensated compactness and applications to partial differential equations.In: Nonlinear Analysis and Mechanics. Heriot-Watt Symposium  IV. Res. Notes Math.  39, R. J. Knops (ed.), , San Francisco, 1979. Zbl 0437.35004, MR 0584398
Reference: [28] L.  Tartar: Mathematical tools for studying oscillations and concentrations: From Young measures to $H$-measures and their variants.In: Multiscale problems in science and technology. Challenges to mathematical analysis and perspectives. Proceedings of the conference on multiscale problems in science and technology, held in Dubrovnik, Croatia, September  3–9,  2000, N. Antonič et al. (eds.), Springer-Verlag, Berlin, 2002, pp. 1–84. Zbl 1015.35001, MR 1998790
Reference: [29] M.  Valadier: Young measures.In: Methods of Nonconvex Analysis. Lect. Notes Math.  1446, A. Cellina (ed.), Springer-Verlag, Berlin, 1990, pp. 152–188. Zbl 0742.49010, MR 1079763
Reference: [30] J.  Warga: Optimal Control of Differential and Functional Equations.Academic Press, New York, 1972. Zbl 0253.49001, MR 0372708
Reference: [31] L. C. Young: Generalized curves and the existence of an attained absolute minimum in the calculus of variations.C.  R.  Soc. Sci. Lett. Varsovie, Classe  III 30 (1937), 212–234. Zbl 0019.21901
.

Files

Files Size Format View
AplMat_52-2007-6_6.pdf 325.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo