Title:
|
The scalar Oseen operator $-\Delta + {\partial}/{\partial x_1}$ in $\mathbb{R}^2$ (English) |
Author:
|
Amrouche, Chérif |
Author:
|
Bouzit, Hamid |
Language:
|
English |
Journal:
|
Applications of Mathematics |
ISSN:
|
0862-7940 (print) |
ISSN:
|
1572-9109 (online) |
Volume:
|
53 |
Issue:
|
1 |
Year:
|
2008 |
Pages:
|
41-80 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
This paper solves the scalar Oseen equation, a linearized form of the Navier-Stokes equation. Because the fundamental solution has anisotropic properties, the problem is set in a Sobolev space with isotropic and anisotropic weights. We establish some existence results and regularities in $L^{p}$ theory. (English) |
Keyword:
|
Oseen equation |
Keyword:
|
weighted Sobolev space |
Keyword:
|
anisotropic weight |
MSC:
|
26D15 |
MSC:
|
35Q30 |
MSC:
|
35Q35 |
MSC:
|
76D03 |
MSC:
|
76D05 |
idZBL:
|
Zbl 1177.76080 |
idMR:
|
MR2382289 |
DOI:
|
10.1007/s10492-008-0012-2 |
. |
Date available:
|
2009-09-22T18:32:08Z |
Last updated:
|
2020-07-02 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/134698 |
. |
Reference:
|
[1] C. Amrouche, V. Girault, J. Giroire: Weighted Sobolev spaces for Laplace’s equation in $\mathbb{R}^n$.J. Math. Pures Appl., IX. Sér. 73 (1994), 579–606. MR 1309165 |
Reference:
|
[2] C. Amrouche, U. Razafison: Weighted Sobolev spaces for a scalar model of the stationary Oseen equation in $\mathbb{R}^{3}$.J. Math. Fluids Mech (to appear). MR 2329264 |
Reference:
|
[3] R. Farwig: A variational approach in weighted Sobolev spaces to the operator $-\Delta + \partial /\partial x_{1}$ in exterior domains of $\mathbb{R}^{3}$.Math. Z. 210 (1992), 449–464. MR 1171183 |
Reference:
|
[4] R. Farwig: The stationary exterior 3D-problem of Oseen and Navier-Stokes equations in anisotropically weighted Sobolev spaces.Math. Z. 211 (1992), 409–448. MR 1190220, 10.1007/BF02571437 |
Reference:
|
[5] R. Farwig, H. Sohr: Weighted estimates for the Oseen equations and the Navier-Stokes equations in exterior domains.Proc. 3rd International Conference on the Navier-Stokes Equations: Theory and Numerical Methods, Oberwolfach, Germany, June 5–11, 1994, J. G. Heywood (ed.), World Scientific, Ser. Adv. Math. Appl. Sci. Vol. 47, Singapore, 1998, pp. 11–30. MR 1643022 |
Reference:
|
[6] R. Finn: On the exterior stationary problem for the Navier-Stokes equations, and associated perturbation problems.Arch. Ration. Mech. Anal. 19 (1965), 363–406. Zbl 0149.44606, MR 0182816, 10.1007/BF00253485 |
Reference:
|
[7] R. Finn: Estimates at infinity for stationary solutions of the Navier-Stokes equations.Bull. Math. Soc. Sci. Math. Phys. R. P. R. 51 (1960), 387–418. Zbl 0106.39402, MR 0166495 |
Reference:
|
[8] G. P. Galdi: An introduction to the mathematical theory of the Navier-Stokes equations. Vol. I: Linearized steady problems.Springer Tracts in Natural Philosophy, Vol. 38, Springer, New York, 1994. MR 1284205 |
Reference:
|
[9] B. Hanouzet: Espaces de Sobolev avec poids application au problème de Dirichlet dans un demi espace.Rend. Sem. Mat. Univ. Padova 46 (1972), 227–272. Zbl 0247.35041, MR 0310417 |
Reference:
|
[10] S. Kračmar, A. Novotný, M. Pokorný: Estimates of Oseen kernels in weighted $L^p$ spaces.J. Math. Soc. Japan 53 (2001), 59–111. MR 1800524, 10.2969/jmsj/05310059 |
Reference:
|
[11] A. Kufner: Weighted Sobolev spaces.Wiley-Interscience, New York, 1985. Zbl 0579.35021, MR 0802206 |
Reference:
|
[12] P. I. Lizorkin: $(L^p,L^{q})$-multipliers of Fourier integrals.Dokl. Akad. Nauk SSSR 152 (1963), 808–811. Zbl 0199.44401, MR 0154057 |
Reference:
|
[13] C. W. Oseen: Über die Stokessche Formel und über eine verwandte Aufgabe in der Hydrodynamik.Arkiv fór Mat. Astron. och Fys. 7 (1911), 1–36. |
Reference:
|
[14] C. W. Oseen: Neuere Methoden und Ergebnisse in der Hydrodynamik.Akadem. Verlagsgesellschaft, Leipzig, 1927. |
Reference:
|
[15] C. Pérez: Two weighted norm inequalities for Riesz potentials and uniform $L^{p}$- weighted Sobolev inequalities.Indiana Univ. Math. J. 39 (1990), 31–44. MR 1052009, 10.1512/iumj.1990.39.39004 |
Reference:
|
[16] M. Reed, B. Simon: Methods of Modern Mathematical Physics. II. Fourier Analysis, Self-adjointness.Academic Press, New York-San Francisco-London, 1975. MR 0493420 |
Reference:
|
[17] E. M. Stein: Singular Integrals and Differentiability Properties of Functions.University Press, Princeton, 1970. Zbl 0207.13501, MR 0290095 |
. |