Previous |  Up |  Next

Article

Title: The scalar Oseen operator $-\Delta + {\partial}/{\partial x_1}$ in $\mathbb{R}^2$ (English)
Author: Amrouche, Chérif
Author: Bouzit, Hamid
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 53
Issue: 1
Year: 2008
Pages: 41-80
Summary lang: English
.
Category: math
.
Summary: This paper solves the scalar Oseen equation, a linearized form of the Navier-Stokes equation. Because the fundamental solution has anisotropic properties, the problem is set in a Sobolev space with isotropic and anisotropic weights. We establish some existence results and regularities in $L^{p}$ theory. (English)
Keyword: Oseen equation
Keyword: weighted Sobolev space
Keyword: anisotropic weight
MSC: 26D15
MSC: 35Q30
MSC: 35Q35
MSC: 76D03
MSC: 76D05
idZBL: Zbl 1177.76080
idMR: MR2382289
DOI: 10.1007/s10492-008-0012-2
.
Date available: 2009-09-22T18:32:08Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134698
.
Reference: [1] C.  Amrouche, V.  Girault, J. Giroire: Weighted Sobolev spaces for Laplace’s equation in $\mathbb{R}^n$.J.  Math. Pures Appl., IX.  Sér. 73 (1994), 579–606. MR 1309165
Reference: [2] C.  Amrouche, U.  Razafison: Weighted Sobolev spaces for a scalar model of the stationary Oseen equation in  $\mathbb{R}^{3}$.J. Math. Fluids Mech (to appear). MR 2329264
Reference: [3] R.  Farwig: A variational approach in weighted Sobolev spaces to the operator $-\Delta + \partial /\partial x_{1}$ in exterior domains of  $\mathbb{R}^{3}$.Math.  Z. 210 (1992), 449–464. MR 1171183
Reference: [4] R.  Farwig: The stationary exterior 3D-problem of Oseen and Navier-Stokes equations in anisotropically weighted Sobolev spaces.Math. Z. 211 (1992), 409–448. MR 1190220, 10.1007/BF02571437
Reference: [5] R.  Farwig, H.  Sohr: Weighted estimates for the Oseen equations and the Navier-Stokes equations in exterior domains.Proc. 3rd International Conference on the Navier-Stokes Equations: Theory and Numerical Methods, Oberwolfach, Germany, June 5–11, 1994, J. G. Heywood (ed.), World Scientific, Ser. Adv. Math. Appl. Sci. Vol. 47, Singapore, 1998, pp. 11–30. MR 1643022
Reference: [6] R.  Finn: On the exterior stationary problem for the Navier-Stokes equations, and associated perturbation problems.Arch. Ration. Mech. Anal. 19 (1965), 363–406. Zbl 0149.44606, MR 0182816, 10.1007/BF00253485
Reference: [7] R.  Finn: Estimates at infinity for stationary solutions of the Navier-Stokes equations.Bull. Math. Soc. Sci. Math. Phys. R.  P.  R. 51 (1960), 387–418. Zbl 0106.39402, MR 0166495
Reference: [8] G. P.  Galdi: An introduction to the mathematical theory of the Navier-Stokes equations. Vol.  I: Linearized steady problems.Springer Tracts in Natural Philosophy, Vol. 38, Springer, New York, 1994. MR 1284205
Reference: [9] B.  Hanouzet: Espaces de Sobolev avec poids application au problème de Dirichlet dans un demi espace.Rend. Sem. Mat. Univ. Padova 46 (1972), 227–272. Zbl 0247.35041, MR 0310417
Reference: [10] S.  Kračmar, A.  Novotný, M.  Pokorný: Estimates of Oseen kernels in weighted $L^p$ spaces.J.  Math. Soc. Japan 53 (2001), 59–111. MR 1800524, 10.2969/jmsj/05310059
Reference: [11] A.  Kufner: Weighted Sobolev spaces.Wiley-Interscience, New York, 1985. Zbl 0579.35021, MR 0802206
Reference: [12] P. I.  Lizorkin: $(L^p,L^{q})$-multipliers of Fourier integrals.Dokl. Akad. Nauk SSSR 152 (1963), 808–811. Zbl 0199.44401, MR 0154057
Reference: [13] C. W.  Oseen: Über die Stokessche Formel und über eine verwandte Aufgabe in der Hydrodynamik.Arkiv fór Mat. Astron. och Fys. 7 (1911), 1–36.
Reference: [14] C. W.  Oseen: Neuere Methoden und Ergebnisse in der Hydrodynamik.Akadem. Verlagsgesellschaft, Leipzig, 1927.
Reference: [15] C.  Pérez: Two weighted norm inequalities for Riesz potentials and uniform $L^{p}$- weighted Sobolev inequalities.Indiana Univ. Math. J. 39 (1990), 31–44. MR 1052009, 10.1512/iumj.1990.39.39004
Reference: [16] M.  Reed, B.  Simon: Methods of Modern Mathematical Physics. II.  Fourier Analysis, Self-adjointness.Academic Press, New York-San Francisco-London, 1975. MR 0493420
Reference: [17] E. M.  Stein: Singular Integrals and Differentiability Properties of Functions.University Press, Princeton, 1970. Zbl 0207.13501, MR 0290095
.

Files

Files Size Format View
AplMat_53-2008-1_3.pdf 498.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo