Previous |  Up |  Next


Title: Richardson extrapolation and defect correction of mixed finite element methods for integro-differential equations in porous media (English)
Author: Jia, Shanghui
Author: Li, Deli
Author: Liu, Tang
Author: Zhang, Shuhua
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940
Volume: 53
Issue: 1
Year: 2008
Pages: 13-39
Summary lang: English
Category: math
Summary: Asymptotic error expansions in the sense of $L^{\infty }$-norm for the Raviart-Thomas mixed finite element approximation by the lowest-order rectangular element associated with a class of parabolic integro-differential equations on a rectangular domain are derived, such that the Richardson extrapolation of two different schemes and an interpolation defect correction can be applied to increase the accuracy of the approximations for both the vector field and the scalar field by the aid of an interpolation postprocessing technique, and the key point in deriving them is the establishment of the error estimates for the mixed regularized Green’s functions with memory terms presented in R. Ewing at al., Int. J. Numer. Anal. Model 2 (2005), 301–328. As a result of all these higher order numerical approximations, they can be used to generate a posteriori error estimators for this mixed finite element approximation. (English)
Keyword: integro-differential equations
Keyword: mixed finite element methods
Keyword: mixed regularized Green’s functions
Keyword: asymptotic expansions
Keyword: interpolation defect correction
Keyword: interpolation postprocessing
Keyword: a posteriori error estimators
MSC: 45K05
MSC: 65M12
MSC: 65M60
MSC: 65R20
MSC: 76M10
MSC: 76S05
idZBL: Zbl 1177.76408
idMR: MR2382288
DOI: 10.1007/s10492-008-0011-3
Date available: 2009-09-22T18:32:02Z
Last updated: 2015-05-17
Stable URL:
Reference: [1] I.  Babuška: The finite element method with Lagrangian multipliers.Numer. Math. 20 (1973), 179–192. MR 0359352, 10.1007/BF01436561
Reference: [2] H.  Blum: Asymptotic Error Expansion and Defect in the Finite Element Method.University of Heidelberg, Institut für Angewandte Mathematik, Heidelberg, .
Reference: [3] H.  Blum, Q.  Lin, R.  Rannacher: Asymptotic error expansion and Richardson extrapolation for linear finite elements.Numer. Math. 49 (1986), 11–38. MR 0847015, 10.1007/BF01389427
Reference: [4] F.  Brezzi: On the existence, uniqueness, and approximation of saddle point problems arising from Lagrangian multipliers.RAIRO, Anal. Numér. 2 (1974), 129–151. Zbl 0338.90047, MR 0365287
Reference: [5] H.  Brunner, Y.  Lin, S.  Zhang: Higher accuracy methods for second-kind Volterra integral equations based on asymptotic expansions of iterated Galerkin methods.J.  Integral Equations Appl. 10 (1998), 375–396. MR 1669667, 10.1216/jiea/1181074245
Reference: [6] J. R.  Cannon, Y.  Lin: Non-classical $H^1$  projection and Galerkin methods for nonlinear parabolic integro-differential equations.Calcolo 25 (1988), 187–201. MR 1053754, 10.1007/BF02575943
Reference: [7] J. R.  Cannon Y.  Lin: A priori $L^2$ error estimates for finite element methods for nonlinear diffusion equations with memory.SIAM J.  Numer. Anal. 27 (1990), 595–607. MR 1041253, 10.1137/0727036
Reference: [8] C.  Chen, Y.  Huang: Higher Accuracy Theory of FEM.Hunan Science Press, Changsha, 1995.
Reference: [9] J.  Douglas, Jr., J. E.  Roberts: Global estimates for mixed methods for second order elliptic equations.Math. Comput. 44 (1985), 39–52. MR 0771029, 10.1090/S0025-5718-1985-0771029-9
Reference: [10] R. E.  Ewing, Y.  Lin, T.  Sun, J.  Wang, S. Zhang: Sharp $L^2$  error estimates and superconvergence of mixed finite element methods for nonFickian flows in porous media.SIAM J.  Numer. Anal. 40 (2002), 1538–1560. MR 1951906, 10.1137/S0036142900378406
Reference: [11] R. E.  Ewing, Y.  Lin, J.  Wang: A numerical approximation of nonFickian flows with mixing length growth in porous media.Acta Math. Univ. Comenian. (N.  S.) 70 (2001), 75–84. MR 1865361
Reference: [12] R. E.  Ewing, Y.  Lin, J.  Wang: A backward Euler method for mixed finite element approximations of nonFickian flows with non-smooth data in porous media.Preprint.
Reference: [13] R. E.  Ewing, Y.  Lin, J. Wang, S.  Zhang: $L^{\infty }$-error estimates and superconvergence in maximum norm of mixed finite element methods for nonFickian flows in porous media.Int. J.  Numer. Anal. Model. 2 (2005), 301–328. MR 2112650
Reference: [14] G.  Fairweather, Q.  Lin, Y.  Lin, J.  Wang, S.  Zhang: Asymptotic expansions and Richardson extrapolation of approximate solutions for second order elliptic problems on rectangular domains by mixed finite element methods.SIAM J. Numer. Anal. 44 (2006), 1122–1149. MR 2231858, 10.1137/040614293
Reference: [15] P.  Helfrich: Asymptotic expansion for the finite element approximations of parabolic problems.Bonn. Math. Schr. 158 (1984), 11–30. MR 0793413
Reference: [16] S.  Jia, D.  Li, S.  Zhang: Asymptotic expansions and Richardson extrapolation of approximate solutions for integro-differential equations by mixed finite element methods.Adv. Comput. Math (to appear). MR 2447252
Reference: [17] M. N.  LeRoux, V.  Thomée: Numerical solutions of semilinear integro-differential equations of parabolic type with nonsmooth data.SIAM J. Numer. Anal. 26 (1989), 1291–1309. 10.1137/0726075
Reference: [18] Q.  Lin, I. H.  Sloan, R.  Xie: Extrapolation of the iterated-collocation method for integral equations of the second kind.SIAM J.  Numer. Anal. 27 (1990), 1535–1541. MR 1080337, 10.1137/0727090
Reference: [19] Q.  Lin, N.  Yan: The Construction and Analysis of High Efficiency Finite Element Methods.Hebei University Publishers, , 1996.
Reference: [20] Q.  Lin, S.  Zhang: An immediate analysis for global superconvergence for integrodifferential equations.Appl. Math. 42 (1997), 1–21. MR 1426677, 10.1023/A:1022264125558
Reference: [21] Q.  Lin, S.  Zhang, N.  Yan: Asymptotic error expansion and defect correction for Sobolev and viscoelasticity type equations.J.  Comput. Math. 16 (1998), 57–62. MR 1606093
Reference: [22] Q.  Lin, S.  Zhang, N.  Yan: High accuracy analysis for integrodifferential equations.Acta Math. Appl. Sin. 14 (1998), 202–211. MR 1620823, 10.1007/BF02677428
Reference: [23] Q.  Lin, S.  Zhang, N.  Yan: Methods for improving approximate accuracy for hyperbolic integro-differential equations.Syst. Sci. Math. Sci. 10 (1997), 282–288. MR 1469188
Reference: [24] Q.  Lin, S.  Zhang, N.  Yan: Extrapolation and defect correction for diffusion equations with boundary integral conditions.Acta Math. Sci. 17 (1997), 409–412. MR 1613231
Reference: [25] Q.  Lin, S.  Zhang, N.  Yan: An acceleration method for integral equations by using interpolation post-processing.Adv. Comput. Math. 9 (1998), 117–128. MR 1662762, 10.1023/A:1018925103993
Reference: [26] T.  Lin, Y.  Lin, M.  Rao, S.  Zhang: Petrov-Galerkin methods for linear Volterra integro-differential equations.SIAM J.  Numer. Anal. 38 (2000), 937–963. MR 1781210, 10.1137/S0036142999336145
Reference: [27] Y.  Lin: On maximum norm estimates for Ritz-Volterra projections and applications to some time-dependent problems.J.  Comput. Math. 15 (1997), 159–178. MR 1448820
Reference: [28] Y.  Lin, V.  Thomée, L.  Wahlbin: Ritz-Volterra projection onto finite element spaces and applications to integrodifferential and related equations.SIAM J.  Numer. Anal. 28 (1991), 1047–1070. MR 1111453, 10.1137/0728056
Reference: [29] G.  Marchuk, V.  Shaidurov: Difference Methods and Their Extrapolation.Springer, New York, 1983. MR 0705477
Reference: [30] B.  Neta, J.  Igwe: Finite difference versus finite elements for solving nonlinear integro-differential equations.J.  Math. Anal. Appl. 112 (1985), 607–618. MR 0813623, 10.1016/0022-247X(85)90266-5
Reference: [31] A. K.  Pani, V.  Thomée, L. Wahlbin: Numerical methods for hyperbolic and parabolic integro-differential equations.J.  Integral Equations Appl. 4 (1992), 533–584. MR 1200801, 10.1216/jiea/1181075713
Reference: [32] I. H.  Sloan, V.  Thomée: Time discretization of an integro-differential equation of parabolic type.SIAM J.  Numer. Anal. 23 (1986), 1052–1061. MR 0859017, 10.1137/0723073
Reference: [33] V.  Thomée, N.  Zhang: Error estimates for semidiscrete finite element methods for parabolic integro-differential equations.Math. Comput. 53 (1989), 121–139. MR 0969493, 10.2307/2008352
Reference: [34] J.  Wang: Superconvergence and extrapolation for mixed finite element methods on rectangular domains.Math. Comput. 56 (1991), 477–503. Zbl 0729.65084, MR 1068807, 10.1090/S0025-5718-1991-1068807-0
Reference: [35] J.  Wang: Asymptotic expansions and $L^{\infty }$-error estimates for mixed finite element methods for second order elliptic problems.Numer. Math. 55 (1989), 401–430. MR 0997230, 10.1007/BF01396046
Reference: [36] N.  Yan, K.  Li: An extrapolation method for BEM.J.  Comput. Math. 2 (1989), 217–224. Zbl 0673.65072, MR 1016842
Reference: [37] S.  Zhang, T.  Lin, Y.  Lin, M.  Rao: Extrapolation and a-posteriori error estimators of Petrov-Galerkin methods for non-linear Volterra integro-differential equations.J.  Comp. Math. 19 (2001), 407–422. MR 1842853
Reference: [38] A.  Zhou, C. B.  Liem, T. M.  Shih, T.  Lü: A multi-parameter splitting extrapolation and a parallel algorithm.Syst. Sci. Math. Sci. 10 (1997), 253–260. MR 1469184
Reference: [39] Q.  Zhu, Q.  Lin: Superconvergence Theory of the Finite Element Methods.Hunan Science Press, , 1989.


Files Size Format View
AplMat_53-2008-1_2.pdf 328.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo