Previous |  Up |  Next

Article

Title: Stability and consistency of the semi-implicit co-volume scheme for regularized mean curvature flow equation in level set formulation (English)
Author: Handlovičová, Angela
Author: Mikula, Karol
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 53
Issue: 2
Year: 2008
Pages: 105-129
Summary lang: English
.
Category: math
.
Summary: We show stability and consistency of the linear semi-implicit complementary volume numerical scheme for solving the regularized, in the sense of Evans and Spruck, mean curvature flow equation in the level set formulation. The numerical method is based on the finite volume methodology using the so-called complementary volumes to a finite element triangulation. The scheme gives the solution in an efficient and unconditionally stable way. (English)
Keyword: mean curvature flow
Keyword: level set equation
Keyword: numerical solution
Keyword: semi-implicit scheme
Keyword: complementary volume method
Keyword: unconditional stability
Keyword: consistency
MSC: 35B35
MSC: 35K55
MSC: 35K93
MSC: 53C42
MSC: 65M06
MSC: 65M08
MSC: 65M12
MSC: 68U10
MSC: 76M25
idZBL: Zbl 1199.35197
idMR: MR2399901
DOI: 10.1007/s10492-008-0015-z
.
Date available: 2009-09-22T18:32:28Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134701
.
Reference: [1] L. Alvarez, F. Guichard, P.-L. Lions, J.-M. Morel: Axioms and fundamental equations of image processing.Arch. Ration. Mech. Anal. 123 (1993), 200–257.
Reference: [2] S. Angenent, M. E. Gurtin: Multiphase thermomechanics with an interfacial structure. 2. Evolution of an isothermal interface.Arch. Ration. Mech. Anal. 108 (1989), 323–391. 10.1007/BF01041068
Reference: [3] G.  Barles, P. E. Souganidis: Convergence of approximation schemes for fully nonlinear second order equations.Asymptotic Anal. 4 (1991), 271–283.
Reference: [4] M. Beneš, K. Mikula: Simulations of anisotropic motion by mean curvature—comparison of phase field and sharp interface approaches.Acta Math. Univ. Comen. 67 (1998), 17–42.
Reference: [5] S. L. Chan, E. O. Purisima: A new tetrahedral tesselation scheme for isosurface generation.Computers and Graphics 22 (1998), 83–90. 10.1016/S0097-8493(97)00085-X
Reference: [6] V. Caselles, R. Kimmel, G. Sapiro: Geodesic active contours.International Journal of Computer Vision 22 (1997), 61–79. 10.1023/A:1007979827043
Reference: [7] Y.-G. Chen, Y. Giga, S. Goto: Uniqueness and existence of viscosity solutions of generalized mean curvature flow equation.J.  Differ. Geom. 33 (1991), 749–786. MR 1100211, 10.4310/jdg/1214446564
Reference: [8] S. Corsaro, K. Mikula, A. Sarti, F. Sgallari: Semi-implicit co-volume method in 3D  image segmentation.SIAM J.  Sci. Comput. 28 (2006), 2248–2265. MR 2272260, 10.1137/060651203
Reference: [9] M. G. Crandall, H. Ishii, P.-L. Lions: User’s guide to viscosity solutions of second order partial differential equations.Bull. Am. Math. Soc. (NS) 27 (1992), 1–67. MR 1118699, 10.1090/S0273-0979-1992-00266-5
Reference: [10] K. Deckelnick, G. Dziuk: Error estimates for a semi-implicit fully discrete finite element scheme for the mean curvature flow of graphs.Interfaces Free Bound. 2 (2000), 341–359. MR 1789171
Reference: [11] K. Deckelnick, G. Dziuk: Numerical approximations of mean curvature flow of graphs and level sets.In: Mathematical Aspects of Evolving Interfaces, L.  Ambrosio, K.  Deckelnick, G.  Dziuk, M.  Mimura, V. A.  Solonnikov, H. M.  Soner (eds.), Springer, Berlin-Heidelberg-New York, 2003, pp. 53–87. MR 2011033
Reference: [12] G. Dziuk: An algorithm for evolutionary surfaces.Numer. Math. 58 (1991), 603–611. Zbl 0714.65092, MR 1083523
Reference: [13] G. Dziuk: Convergence of a semi-discrete scheme for the curve shortening flow.Math. Models Methods Appl. Sci. 4 (1994), 589–606. Zbl 0811.65112, MR 1291140, 10.1142/S0218202594000339
Reference: [14] L. C. Evans, J. Spruck: Motion of level sets by mean curvature  I.J.  Differ. Geom. 33 (1991), 635–681. MR 1100206, 10.4310/jdg/1214446559
Reference: [15] A. Handlovičová, K. Mikula, A. Sarti: Numerical solution of parabolic equations related to level set formulation of mean curvature flow.Comput. Vis. Sci. 1 (1998), 179–182. 10.1007/s007910050016
Reference: [16] A. Handlovičová, K. Mikula, F. Sgallari: Semi-implicit complementary volume scheme for solving level set like equations in image processing and curve evolution.Numer. Math. 93 (2003), 675–695. MR 1961884, 10.1007/s002110100374
Reference: [17] A. Handlovičová, K. Mikula, F. Sgallari: Variational numerical methods for solving nonlinear diffusion equations arising in image processing.J.  Visual Communication and Image Representation 13 (2002), 217–237. 10.1006/jvci.2001.0479
Reference: [18] J. Kačur, K. Mikula: Solution of nonlinear diffusion appearing in image smoothing and edge detection.Appl. Numer. Math. 17 (1995), 47–59. MR 1335517, 10.1016/0168-9274(95)00008-I
Reference: [19] S. Kichenassamy, A. Kumar, P. Olver, A. Tannenbaum, A. Yezzi: Conformal curvature flows: from phase transitions to active vision.Arch. Ration. Mech. Anal. 134 (1996), 275–301. MR 1412430, 10.1007/BF00379537
Reference: [20] R. Le Veque: Finite Volume Methods for Hyperbolic Problems. Cambridge Texts in Applied Mathematics.Cambridge University Press, Cambridge, 2002. MR 1925043
Reference: [21] K. Mikula, J. Kačur: Evolution of convex plane curves describing anisotropic motions of phase interfaces.SIAM J. Sci. Comput. 17 (1996), 1302–1327. MR 1413703, 10.1137/S1064827594261905
Reference: [22] K. Mikula, N. Ramarosy: Semi-implicit finite volume scheme for solving nonlinear diffusion equations in image processing.Numer. Math. 89 (2001), 561–590. MR 1864431, 10.1007/PL00005479
Reference: [23] K. Mikula, A. Sarti, F. Sgallari: Co-volume method for Riemannian mean curvature flow in subjective surfaces multiscale segmentation.Comput. Vis. Sci. 9 (2006), 23–31. MR 2214835, 10.1007/s00791-006-0014-0
Reference: [24] K. Mikula, A. Sarti, F. Sgallari: Semi-implicit co-volume level set method in medical image segmentation.In: Handbook of Biomedical Image Analysis: Segmentation and Registration Models, J. Suri et al. (eds.), Springer, New York, 2005, pp. 583–626.
Reference: [25] K. Mikula, D. Ševčovič: Evolution of plane curves driven by a nonlinear function of curvature and anisotropy.SIAM J.  Appl. Math. 61 (2001), 1473–1501. MR 1824511, 10.1137/S0036139999359288
Reference: [26] K. Mikula, D. Ševčovič: Computational and qualitative aspects of evolution of curves driven by curvature and external force.Computing and Visualization in Science 6 (2004), 211–225. MR 2071441, 10.1007/s00791-004-0131-6
Reference: [27] R. H. Nochetto, M. Paolini, C. Verdi: Sharp error analysis for curvature dependent evolving fronts.Math. Models Methods Appl. Sci. 3 (1993), 711–723. MR 1245632, 10.1142/S0218202593000369
Reference: [28] A. M. Oberman: A convergent monotone difference scheme for motion of level sets by mean curvature.Numer. Math. 99 (2004), 365–379. Zbl 1070.65082, MR 2107436, 10.1007/s00211-004-0566-1
Reference: [29] S. Osher, R. Fedkiw: Level Set Methods and Dynamic Implicit Surfaces.Springer, New York, 2003. MR 1939127
Reference: [30] S. Osher, J. Sethian: Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations.J. Comput. Phys. 79 (1988), 12–49. MR 0965860
Reference: [31] A. Sarti, R. Malladi, J.A. Sethian: Subjective surfaces: A method for completing missing boundaries.Proc. Natl. Acad. Sci. USA 12 (2000), 6258–6263. MR 1760935
Reference: [32] J. A. Sethian: Level Set Methods and Fast Marching Methods. Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Material Science.Cambridge University Press, New York, 1999. MR 1700751
Reference: [33] N. J. Walkington: Algorithms for computing motion by mean curvature.SIAM J.  Numer. Anal. 33 (1996), 2215–2238. Zbl 0863.65061, MR 1427460, 10.1137/S0036142994262068
.

Files

Files Size Format View
AplMat_53-2008-2_3.pdf 366.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo