Previous |  Up |  Next

Article

Title: The existence of periodic solutions for a class of nonlinear functional differential equations (English)
Author: Liu, Jin-Zhi
Author: Jiang, Zhi-Yuan
Author: Wu, Ai-Xiang
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 53
Issue: 2
Year: 2008
Pages: 97-103
Summary lang: English
.
Category: math
.
Summary: This paper is concerned with periodic solutions of first-order nonlinear functional differential equations with deviating arguments. Some new sufficient conditions for the existence of periodic solutions are obtained. The paper extends and improves some well-known results. (English)
Keyword: nonlinear functional differential equation
Keyword: differential equation with deviating arguments
Keyword: periodic solutions
Keyword: coincidence degree theory
MSC: 34B15
MSC: 34K13
idZBL: Zbl 1199.34351
idMR: MR2399900
DOI: 10.1007/s10492-008-0014-0
.
Date available: 2009-09-22T18:32:22Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134700
.
Reference: [1] S. W.  Ma, J. S.  Yu, Z. C.  Wang: On periodic solutions of functional differential equations with periodic disturbation.Sci. Bull. 43 (1998), 1386–1389.
Reference: [2] R. Hakl, A. Lomtatidze, B. Půža: On periodic solutions of first order linear functional differential equations.Nonlinear Anal., Theory Methods Appl. 49 (2002), 929–945. MR 1895537, 10.1016/S0362-546X(01)00147-X
Reference: [3] R. E.  Fennell: Periodic solutions of functional differential equations.J. Math. Anal. Appl. 39 (1972), 198–201. Zbl 0243.34126
Reference: [4] L. Hatvani, T. Krisztin: On the existence of periodic solutions for linear inhomogeneous and quasilinear functional differential equations.J.  Differ. Equations 97 (1992), 1–15. 10.1016/0022-0396(92)90080-7
Reference: [5] S. Murakami: Linear periodic functional differential equations with infinite delay.Funkc. Ekvacioj 29 (1986), 335–361. Zbl 0616.34067
Reference: [6] M. R.  Zhang: Periodic solutions of linear and quasilinear neutral functional differential equations.J. Math. Anal. Appl. 189 (1995), 378–392. Zbl 0821.34070, 10.1006/jmaa.1995.1025
Reference: [7] R. E.  Gaines, J. L. Mawhin: Coincidence degree and nonlinear differential equations. Lecture Notes in Mathematics Vol. 568.Springer, Berlin-Heidelberg-New York, 1977. MR 0637067
.

Files

Files Size Format View
AplMat_53-2008-2_2.pdf 235.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo