[1] Basu S., Diagana T., Ramaroson F.:
A $p$-adic version of Hilbert-Schmidt operators and applications. J. Anal. Appl. 2 (2004), no. 3, 173--188.
MR 2092641 |
Zbl 1077.47061
[2] Attimu D., Diagana T.:
Representation of bilinear forms in non-Archimedean Hilbert space by linear operators II. Comment. Math. Univ. Carolin. 48 (2007), no. 3, 431--442.
MR 2374125
[4] Diagana T.:
Erratum to: ``Towards a theory of some unbounded linear operators on $p$-adic Hilbert spaces and applications". Ann. Math. Blaise Pascal 13 (2006), 105--106.
DOI 10.5802/ambp.217 |
MR 2233015
[5] Diagana T.:
Non-Archimedean Linear Operators and Applications. Nova Science Publishers, Huntington, NY, 2007.
MR 2294736 |
Zbl 1112.47060
[6] Diagana T.:
Representation of bilinear forms in non-archimedean Hilbert space by linear operators. Comment. Math. Univ. Carolin. 47 (2006), no. 4, 695--705.
MR 2337423
[7] Diagana T.:
An Introduction to Classical and $p$-adic Theory of Linear Operators and Applications. Nova Science Publishers, New York, 2006.
MR 2269328 |
Zbl 1118.47323
[8] Diarra B.:
An operator on some ultrametric Hilbert spaces. J. Analysis 6 (1998), 55--74.
MR 1671148 |
Zbl 0930.47049
[9] Diarra B.: Geometry of the $p$-adic Hilbert spaces. preprint, 1999.
[12] Keller H.A., Ochsenius H.:
Bounded operators on non-archimedean orthomodular spaces. Math. Slovaca 45 (1995), no. 4, 413--434.
MR 1387058 |
Zbl 0855.46049
[13] Ochsenius H., Schikhof W.H.:
Banach spaces over fields with an infinite rank valuation. $p$-adic Functional Analysis (Poznan, 1998), Lecture Notes in Pure and Appl. Mathematics, 207, Marcel Dekker, New York, 1999, pp. 233--293.
MR 1703500 |
Zbl 0938.46056