Previous |  Up |  Next

Article

Title: Spectral analysis for rank one perturbations of diagonal operators in non-archimedean Hilbert space (English)
Author: Diagana, Toka
Author: McNeal, George D.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 50
Issue: 3
Year: 2009
Pages: 385-400
Summary lang: English
.
Category: math
.
Summary: The paper is concerned with the spectral analysis for the class of linear operators $A = D_\lambda + X \otimes Y$ in non-archimedean Hilbert space, where $D_\lambda$ is a diagonal operator and $X \otimes Y$ is a rank one operator. The results of this paper turn out to be a generalization of those results obtained by Diarra. (English)
Keyword: spectral analysis
Keyword: diagonal operator
Keyword: rank one operator
Keyword: eigenvalue
Keyword: spectrum
Keyword: non-archimedean Hilbert space
MSC: 42A75
MSC: 42A85
MSC: 44A35
idZBL: Zbl 1212.47126
idMR: MR2573412
.
Date available: 2009-09-23T21:34:41Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/134911
.
Related article: http://dml.cz/handle/10338.dmlcz/137453
.
Reference: [1] Basu S., Diagana T., Ramaroson F.: A $p$-adic version of Hilbert-Schmidt operators and applications.J. Anal. Appl. 2 (2004), no. 3, 173--188. Zbl 1077.47061, MR 2092641
Reference: [2] Attimu D., Diagana T.: Representation of bilinear forms in non-Archimedean Hilbert space by linear operators II.Comment. Math. Univ. Carolin. 48 (2007), no. 3, 431--442. MR 2374125
Reference: [3] Diagana T.: Towards a theory of some unbounded linear operators on $p$-adic Hilbert spaces and applications.Ann. Math. Blaise Pascal 12 (2005), no. 1, 205--222. Zbl 1087.47061, MR 2126449, 10.5802/ambp.203
Reference: [4] Diagana T.: Erratum to: ``Towards a theory of some unbounded linear operators on $p$-adic Hilbert spaces and applications".Ann. Math. Blaise Pascal 13 (2006), 105--106. MR 2233015, 10.5802/ambp.217
Reference: [5] Diagana T.: Non-Archimedean Linear Operators and Applications.Nova Science Publishers, Huntington, NY, 2007. Zbl 1112.47060, MR 2294736
Reference: [6] Diagana T.: Representation of bilinear forms in non-archimedean Hilbert space by linear operators.Comment. Math. Univ. Carolin. 47 (2006), no. 4, 695--705. MR 2337423
Reference: [7] Diagana T.: An Introduction to Classical and $p$-adic Theory of Linear Operators and Applications.Nova Science Publishers, New York, 2006. Zbl 1118.47323, MR 2269328
Reference: [8] Diarra B.: An operator on some ultrametric Hilbert spaces.J. Analysis 6 (1998), 55--74. Zbl 0930.47049, MR 1671148
Reference: [9] Diarra B.: Geometry of the $p$-adic Hilbert spaces.preprint, 1999.
Reference: [10] Fois C., Jung I.B., Ko E., Pearcy C.: On rank one perturbations of normal operators.J. Funct. Anal. 253 (2008), 628--646. MR 2370093, 10.1016/j.jfa.2007.09.007
Reference: [11] Ionascu E.: Rank-one perturbations of diagonal operators.Integral Equations Operator Theory 39 (2001), 421--440. Zbl 0979.47012, MR 1829279, 10.1007/BF01203323
Reference: [12] Keller H.A., Ochsenius H.: Bounded operators on non-archimedean orthomodular spaces.Math. Slovaca 45 (1995), no. 4, 413--434. Zbl 0855.46049, MR 1387058
Reference: [13] Ochsenius H., Schikhof W.H.: Banach spaces over fields with an infinite rank valuation.$p$-adic Functional Analysis (Poznan, 1998), Lecture Notes in Pure and Appl. Mathematics, 207, Marcel Dekker, New York, 1999, pp. 233--293. Zbl 0938.46056, MR 1703500
Reference: [14] van Rooij A.C.M.: Non-archimedean Functional Analysis.Marcel Dekker, New York, 1978. Zbl 0396.46061, MR 0512894
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_50-2009-3_6.pdf 267.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo