Previous |  Up |  Next

Article

Title: Regular methods of summability in some locally convex spaces (English)
Author: Poulios, Costas
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 50
Issue: 3
Year: 2009
Pages: 401-411
Summary lang: English
.
Category: math
.
Summary: Suppose that $X$ is a Fréchet space, $\langle a_{ij}\rangle$ is a regular method of summability and $(x_{i})$ is a bounded sequence in $X$. We prove that there exists a subsequence $(y_{i})$ of $(x_{i})$ such that: either (a) all the subsequences of $(y_{i})$ are summable to a common limit with respect to $\langle a_{ij}\rangle $; or (b) no subsequence of $(y_{i})$ is summable with respect to $\langle a_{ij}\rangle $. This result generalizes the Erdös-Magidor theorem which refers to summability of bounded sequences in Banach spaces. We also show that two analogous results for some $\omega_{1}$-locally convex spaces are consistent to ZFC. (English)
Keyword: Fréchet space
Keyword: regular method of summability
Keyword: summable sequence
Keyword: Galvin-Prikry theorem
Keyword: Erdös-Magidor theorem
MSC: 05D10
MSC: 46A04
MSC: 46B15
idZBL: Zbl 1212.46005
idMR: MR2573413
.
Date available: 2009-09-23T21:34:47Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/134912
.
Reference: [1] Balcar B., Pelant J., Simon P.: The space of ultrafilters on $\mathbb N$ covered by nowhere dense sets.Fund. Math. 110 (1980), 11--24. MR 0600576
Reference: [2] Dunford N., Schwartz J.T.: Linear Operators I: General Theory.Pure and Applied Mathematics, vol. 7, Interscience, New York, 1958. Zbl 0084.10402, MR 0117523
Reference: [3] Ellentuck E.: A new proof that analytic sets are Ramsey.J. Symbolic Logic 39 (1974), 163--165. Zbl 0292.02054, MR 0349393, 10.2307/2272356
Reference: [4] Erdös P., Magidor M.: A note on regular methods of summability and the Banach-Saks property.Proc. Amer. Math. Soc. 59 (1976), 232--234. MR 0430596
Reference: [5] Galvin F., Prikry K.: Borel sets and Ramsey's theorem.J. Symbolic Logic 38 (1973), 193--198. Zbl 0276.04003, MR 0337630, 10.2307/2272055
Reference: [6] Kechris A.: Classical Descriptive Set Theory.Springer, New York, 1995. Zbl 0819.04002, MR 1321597
Reference: [7] Plewik S.: On completely Ramsey sets.Fund. Math. 127 (1986), 127--132. Zbl 0632.04005, MR 0882622
Reference: [8] Rudin W.: Functional Analysis.McGraw-Hill, New York, 1973. Zbl 0867.46001, MR 0365062
Reference: [9] Tsarpalias A.: A note on the Ramsey property.Proc. Amer. Math. Soc. 127 (1999), 583--587. Zbl 0953.03058, MR 1458267, 10.1090/S0002-9939-99-04518-9
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_50-2009-3_7.pdf 250Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo