Title:
|
Linear forms and axioms of choice (English) |
Author:
|
Morillon, Marianne |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
50 |
Issue:
|
3 |
Year:
|
2009 |
Pages:
|
421-431 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We work in set-theory without choice ZF. Given a commutative field $\mathbb K$, we consider the statement $\mathbf D (\mathbb K)$: “On every non null $\mathbb K$-vector space there exists a non-null linear form.” We investigate various statements which are equivalent to $\mathbf D (\mathbb K)$ in ZF. Denoting by $\mathbb Z_2$ the two-element field, we deduce that $\mathbf D (\mathbb Z_2)$ implies the axiom of choice for pairs. We also deduce that $\mathbf D (\mathbb Q)$ implies the axiom of choice for linearly ordered sets isomorphic with $\mathbb Z$. (English) |
Keyword:
|
Axiom of Choice |
Keyword:
|
axiom of finite choice |
Keyword:
|
bases in a vector space |
Keyword:
|
linear forms |
MSC:
|
03E25 |
MSC:
|
15A03 |
idZBL:
|
Zbl 1212.03034 |
idMR:
|
MR2573415 |
. |
Date available:
|
2009-09-23T21:35:01Z |
Last updated:
|
2013-09-22 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/134914 |
. |
Reference:
|
[1] Blass A.: Existence of bases implies the axiom of choice.in Axiomatic Set Theory (Boulder, Colo., 1983), Contemp. Math., 31, pp. 31--33, American Mathematical Society, Providence, RI, 1984. Zbl 0557.03030, MR 0763890, 10.1090/conm/031/763890 |
Reference:
|
[2] Delhommé C., Morillon M.: Spanning graphs and the axiom of choice.Rep. Math. Logic 40 (2006), 165--180. MR 2207308 |
Reference:
|
[3] Halpern J.D.: Bases in vector spaces and the axiom of choice.Proc. Amer. Math. Soc. 17 (1966), 670--673. Zbl 0148.25401, MR 0194340, 10.1090/S0002-9939-1966-0194340-1 |
Reference:
|
[4] Hodges W.: Model Theory.Encyclopedia of Mathematics and its Applications, 42, Cambridge University Press, Cambridge, 1993. Zbl 1139.03021, MR 1221741 |
Reference:
|
[5] Höft H., Howard P.: A graph theoretic equivalent to the axiom of choice.Z. Math. Logik Grundlagen Math. 19 (1973), 191. MR 0316283, 10.1002/malq.19730191103 |
Reference:
|
[6] Howard P.: Bases, spanning sets, and the axiom of choice.MLQ Math. Log. Q. 53 (2007), no. 3, 247--254. Zbl 1121.03064, MR 2330594, 10.1002/malq.200610043 |
Reference:
|
[7] Howard P., Rubin J.E.: Consequences of the Axiom of Choice.Mathematical Surveys and Monographs, 59, American Mathematical Society, Providence, RI, 1998. Zbl 0947.03001, MR 1637107 |
Reference:
|
[8] Jech T.J.: The Axiom of Choice.North-Holland Publishing Co., Amsterdam, 1973. Zbl 0259.02052, MR 0396271 |
Reference:
|
[9] Jurie P.-F.: Coproduits Booléiens (Théorie générale et application à la théorie des anneaux booléiens monadiques).PhD Thesis, University of Clermont-Ferrand, 1965. |
Reference:
|
[10] Keremedis K.: Bases for vector spaces over the two-element field and the axiom of choice.Proc. Amer. Math. Soc. 124 (1996), no. 8, 2527--2531. Zbl 0859.03022, MR 1322930, 10.1090/S0002-9939-96-03305-9 |
Reference:
|
[11] Keremedis K.: The vector space Kinna-Wagner principle is equivalent to the axiom of choice.MLQ Math. Log. Q. 47 (2001), no. 2, 205--210. Zbl 1001.03043, MR 1829941, 10.1002/1521-3870(200105)47:2<205::AID-MALQ205>3.0.CO;2-I |
Reference:
|
[12] Luxemburg W.: Reduced powers of the real number system and equivalents of the Hahn-Banach extension theorem.Applications of Model Theory to Algebra, Analysis and Probability (Internat. Sympos., Pasadena, Calif., 1967), Holt, Rinehart and Winston, New York, 1969, pp. 123--137. Zbl 0181.40101, MR 0237327 |
Reference:
|
[13] Mathias A.: A note on chameleons.preprint. |
Reference:
|
[14] Morillon M.: Algèbres de Boole mesurées et axiome du choix.in Séminaire d'Analyse, 5, (Clermont-Ferrand, 1989--1990), Exp. No. 15, Univ. Clermont-Ferrand II, Clermont, 1993. Zbl 0899.03036, MR 1261917 |
Reference:
|
[15] Shelah S.: Can you take Solovay's inaccessible away?.Israel J. Math. 48 (1984), no. 1, 1--47. Zbl 0596.03055, MR 0768264, 10.1007/BF02760522 |
Reference:
|
[16] Solovay R.M.: A model of set-theory in which every set of reals is Lebesgue measurable.Ann. of Math. (2) 92 (1970), 1--56. Zbl 0207.00905, MR 0265151, 10.2307/1970696 |
Reference:
|
[17] Wright J.D.M.: All operators on a Hilbert space are bounded.Bull. Amer. Math. Soc. 79 (1973), 1247--1250. Zbl 0284.46006, MR 0328649, 10.1090/S0002-9904-1973-13399-3 |
. |