Title:
|
Almost disjoint families and “never” cardinal invariants (English) |
Author:
|
Morgan, Charles |
Author:
|
da Silva, Samuel Gomes |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
50 |
Issue:
|
3 |
Year:
|
2009 |
Pages:
|
433-444 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We define two cardinal invariants of the continuum which arise naturally from combinatorially and topologically appealing properties of almost disjoint families of sets of the natural numbers. These are the never soft and never countably paracompact numbers. We show that these cardinals must both be equal to $\omega_1$ under the effective weak diamond principle $\diamondsuit (\omega,\omega,<)$, answering questions of da Silva S.G., On the presence of countable paracompactness, normality and property $(a)$ in spaces from almost disjoint families, Questions Answers Gen. Topology 25(2007), no. 1, 1--18, and give some information about the strength of this principle. (English) |
Keyword:
|
almost disjoint families |
Keyword:
|
parametrized weak diamond principles |
Keyword:
|
property $(a)$ |
Keyword:
|
countable paracompactness |
MSC:
|
03E17 |
MSC:
|
03E65 |
MSC:
|
54A35 |
MSC:
|
54D20 |
idZBL:
|
Zbl 1212.03032 |
idMR:
|
MR2573416 |
. |
Date available:
|
2009-09-23T21:35:07Z |
Last updated:
|
2013-09-22 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/134915 |
. |
Reference:
|
[BEGPS] Balogh Z., Eisworth T., Gruenhage G., Pavlov O., Szeptycki P.: Uniformization and anti-uniformization properties of ladder systems.Fund. Math. 181 (2004), no. 3, 189--213. Zbl 1051.03034, MR 2099600, 10.4064/fm181-3-1 |
Reference:
|
[Bla1] Blass A.: Questions and answers --- a category arising in linear logic, complexity theory, and set theory.Advances in Linear Logic (Ithaca, NY, 1993), London Math. Soc. Lecture Note Ser. 222, Cambridge Univ. Press, Cambridge, 1995, 61--81. Zbl 0823.03039, MR 1356008 |
Reference:
|
[Bla2] Blass A.: Combinatorial Cardinal Characteristics of the Continuum.to appear as a chapter in the Handbook of Set Theory (eds. M. Foreman, M. Magidor, and A. Kanamori), 104pp. (www.math.lsa.umich.edu/$\sim$ablass/hbk.pdf). MR 2768685 |
Reference:
|
[Bre] Brendle J.: Dow's principle and $Q$-sets.Canad. Math. Bull. 42 (1999), no. 1, 13--24. Zbl 0933.03059, MR 1695894, 10.4153/CMB-1999-002-2 |
Reference:
|
[DS] Devlin K.J., Shelah S.: A weak version of $\diamondsuit $ which follows from $2^{\aleph _0}< 2^{\aleph _1}$.Israel J. Math. 29 (1978), no. 2--3, 239--247. MR 0469756, 10.1007/BF02762012 |
Reference:
|
[F] Fleissner W.G.: Separation properties in Moore spaces.Fund. Math. 98 (1978), no. 3, 279--286. Zbl 0376.54010, MR 0478111 |
Reference:
|
[I] Ishiu T.: The Weak Diamond.preprint, 3 pp. (www.users.muohio.edu/ishiut/research.html). |
Reference:
|
[JP] Jech T., Prikry K.: Cofinality of the partial ordering of functions from $ømega _1$ into $ømega $ under eventual domination.Math. Proc. Cambridge Philos. Soc. 95 (1984), no. 1, 25--32. MR 0727077, 10.1017/S0305004100061272 |
Reference:
|
[M] Matveev M.V.: Some questions on property $(a)$.Questions Answers Gen. Topology 15 (1997), no. 2, 103--111. Zbl 1002.54016, MR 1472172 |
Reference:
|
[Mil] Mildenberger H.: Finding generic filters by playing games.preprint. (http://www.logic.univie.ac.at/$\sim$heike/postings/reap14.pdf). MR 2592047 |
Reference:
|
[MHD] Moore J.T., Hrušák M., Džamonja M.: Parametrized $\diamondsuit$ principles.Trans. Amer. Math. Soc. 356 (2004), no. 6, 2281--2306. MR 2048518, 10.1090/S0002-9947-03-03446-9 |
Reference:
|
[P1] de Paiva V.C.V.: A dialectica-like model of linear logic.Category Theory and Computer Science (Manchester, 1989), Lecture Notes in Comput. Sci. 389 (1989), Springer, Berlin, 341-356. MR 1031571, 10.1007/BFb0018360 |
Reference:
|
[P2] de Paiva V.C.V.: Dialectica and Chu constructions: cousins?.Theory and Applications of Categories, Vol. 17, No. 7, 2007, 127--152. Zbl 1123.18004 |
Reference:
|
[Sil1] da Silva S.G.: Property $(a)$ and dominating families.Comment. Math. Univ. Carolin. 46 (2005), no. 4, 667--684. Zbl 1121.54014, MR 2259498 |
Reference:
|
[Sil2] da Silva S.G.: On the presence of countable paracompactness, normality and property $(a)$ in spaces from almost disjoint families.Questions Answers Gen. Topology 25 (2007), no. 1, 1--18. MR 2319472 |
Reference:
|
[Sze] Szeptycki P.J.: Soft almost disjoint families.Proc. Amer. Math. Soc. 130 (2002), no. 12, 3713--3717. Zbl 0996.03032, MR 1920052, 10.1090/S0002-9939-02-06487-0 |
Reference:
|
[SV] Szeptycki P.J., Vaughan J.E.: Almost disjoint families and property $(a)$.Fund. Math. 158 (1998), no. 3, 229--240. Zbl 0933.54005, MR 1663330 |
Reference:
|
[V] Vojtáš P.: Generalized Galois-Tukey-connections between explicit relations on classical objects of real analysis.Set Theory of the Reals (Ramat Gan, 1991), Israel Math. Conf. Proc. 6, Bar-Ilan Univ., Ramat Gan (1993), 619--643. MR 1234291 |
Reference:
|
[W] Watson W.S.: Separation in countably paracompact spaces.Trans. Amer. Math. Soc. 290 (1985), no. 2, 831--842. Zbl 0583.54013, MR 0792831, 10.1090/S0002-9947-1985-0792831-X |
. |