Previous |  Up |  Next

Article

Title: Almost disjoint families and “never” cardinal invariants (English)
Author: Morgan, Charles
Author: da Silva, Samuel Gomes
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 50
Issue: 3
Year: 2009
Pages: 433-444
Summary lang: English
.
Category: math
.
Summary: We define two cardinal invariants of the continuum which arise naturally from combinatorially and topologically appealing properties of almost disjoint families of sets of the natural numbers. These are the never soft and never countably paracompact numbers. We show that these cardinals must both be equal to $\omega_1$ under the effective weak diamond principle $\diamondsuit (\omega,\omega,<)$, answering questions of da Silva S.G., On the presence of countable paracompactness, normality and property $(a)$ in spaces from almost disjoint families, Questions Answers Gen. Topology 25(2007), no. 1, 1--18, and give some information about the strength of this principle. (English)
Keyword: almost disjoint families
Keyword: parametrized weak diamond principles
Keyword: property $(a)$
Keyword: countable paracompactness
MSC: 03E17
MSC: 03E65
MSC: 54A35
MSC: 54D20
idZBL: Zbl 1212.03032
idMR: MR2573416
.
Date available: 2009-09-23T21:35:07Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/134915
.
Reference: [BEGPS] Balogh Z., Eisworth T., Gruenhage G., Pavlov O., Szeptycki P.: Uniformization and anti-uniformization properties of ladder systems.Fund. Math. 181 (2004), no. 3, 189--213. Zbl 1051.03034, MR 2099600, 10.4064/fm181-3-1
Reference: [Bla1] Blass A.: Questions and answers --- a category arising in linear logic, complexity theory, and set theory.Advances in Linear Logic (Ithaca, NY, 1993), London Math. Soc. Lecture Note Ser. 222, Cambridge Univ. Press, Cambridge, 1995, 61--81. Zbl 0823.03039, MR 1356008
Reference: [Bla2] Blass A.: Combinatorial Cardinal Characteristics of the Continuum.to appear as a chapter in the Handbook of Set Theory (eds. M. Foreman, M. Magidor, and A. Kanamori), 104pp. (www.math.lsa.umich.edu/$\sim$ablass/hbk.pdf). MR 2768685
Reference: [Bre] Brendle J.: Dow's principle and $Q$-sets.Canad. Math. Bull. 42 (1999), no. 1, 13--24. Zbl 0933.03059, MR 1695894, 10.4153/CMB-1999-002-2
Reference: [DS] Devlin K.J., Shelah S.: A weak version of $\diamondsuit $ which follows from $2^{\aleph _0}< 2^{\aleph _1}$.Israel J. Math. 29 (1978), no. 2--3, 239--247. MR 0469756, 10.1007/BF02762012
Reference: [F] Fleissner W.G.: Separation properties in Moore spaces.Fund. Math. 98 (1978), no. 3, 279--286. Zbl 0376.54010, MR 0478111
Reference: [I] Ishiu T.: The Weak Diamond.preprint, 3 pp. (www.users.muohio.edu/ishiut/research.html).
Reference: [JP] Jech T., Prikry K.: Cofinality of the partial ordering of functions from $ømega _1$ into $ømega $ under eventual domination.Math. Proc. Cambridge Philos. Soc. 95 (1984), no. 1, 25--32. MR 0727077, 10.1017/S0305004100061272
Reference: [M] Matveev M.V.: Some questions on property $(a)$.Questions Answers Gen. Topology 15 (1997), no. 2, 103--111. Zbl 1002.54016, MR 1472172
Reference: [Mil] Mildenberger H.: Finding generic filters by playing games.preprint. (http://www.logic.univie.ac.at/$\sim$heike/postings/reap14.pdf). MR 2592047
Reference: [MHD] Moore J.T., Hrušák M., Džamonja M.: Parametrized $\diamondsuit$ principles.Trans. Amer. Math. Soc. 356 (2004), no. 6, 2281--2306. MR 2048518, 10.1090/S0002-9947-03-03446-9
Reference: [P1] de Paiva V.C.V.: A dialectica-like model of linear logic.Category Theory and Computer Science (Manchester, 1989), Lecture Notes in Comput. Sci. 389 (1989), Springer, Berlin, 341-356. MR 1031571, 10.1007/BFb0018360
Reference: [P2] de Paiva V.C.V.: Dialectica and Chu constructions: cousins?.Theory and Applications of Categories, Vol. 17, No. 7, 2007, 127--152. Zbl 1123.18004
Reference: [Sil1] da Silva S.G.: Property $(a)$ and dominating families.Comment. Math. Univ. Carolin. 46 (2005), no. 4, 667--684. Zbl 1121.54014, MR 2259498
Reference: [Sil2] da Silva S.G.: On the presence of countable paracompactness, normality and property $(a)$ in spaces from almost disjoint families.Questions Answers Gen. Topology 25 (2007), no. 1, 1--18. MR 2319472
Reference: [Sze] Szeptycki P.J.: Soft almost disjoint families.Proc. Amer. Math. Soc. 130 (2002), no. 12, 3713--3717. Zbl 0996.03032, MR 1920052, 10.1090/S0002-9939-02-06487-0
Reference: [SV] Szeptycki P.J., Vaughan J.E.: Almost disjoint families and property $(a)$.Fund. Math. 158 (1998), no. 3, 229--240. Zbl 0933.54005, MR 1663330
Reference: [V] Vojtáš P.: Generalized Galois-Tukey-connections between explicit relations on classical objects of real analysis.Set Theory of the Reals (Ramat Gan, 1991), Israel Math. Conf. Proc. 6, Bar-Ilan Univ., Ramat Gan (1993), 619--643. MR 1234291
Reference: [W] Watson W.S.: Separation in countably paracompact spaces.Trans. Amer. Math. Soc. 290 (1985), no. 2, 831--842. Zbl 0583.54013, MR 0792831, 10.1090/S0002-9947-1985-0792831-X
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_50-2009-3_10.pdf 273.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo