Previous |  Up |  Next

Article

Title: Central subsets of Urysohn universal spaces (English)
Author: Niemiec, Piotr
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 50
Issue: 3
Year: 2009
Pages: 445-461
Summary lang: English
.
Category: math
.
Summary: A subset $A$ of a metric space $(X,d)$ is central iff for every Katětov map $f: X \to \mathbb R$ upper bounded by the diameter of $X$ and any finite subset $B$ of $X$ there is $x\in X$ such that $f(a) = d(x,a)$ for each $a\in A \cup B$. Central subsets of the Urysohn universal space $\mathbb U$ (see introduction) are studied. It is proved that a metric space $X$ is isometrically embeddable into $\mathbb U$ as a central set iff $X$ has the collinearity property. The Katětov maps of the real line are characterized. (English)
Keyword: Urysohn's universal space
Keyword: ultrahomogeneous spaces
Keyword: extensions of isometries
MSC: 54D65
MSC: 54E50
idZBL: Zbl 1212.54093
idMR: MR2573417
.
Date available: 2009-09-23T21:35:13Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/134916
.
Reference: [1] Aronszajn N., Panitchpakdi P.: Extension of uniformly continuous transformations and hyperconvex metric spaces.Pacific J. Math. 6 (1956), 405--439. Zbl 0074.17802, MR 0084762, 10.2140/pjm.1956.6.405
Reference: [2] Cameron P.J., Vershik A.M.: Some isometry groups of Urysohn space.Ann. Pure Appl. Logic 143 (2006), no. 1--3, 70--78. MR 2258622, 10.1016/j.apal.2005.08.001
Reference: [3] Gao S., Kechris A.S.: On the classification of Polish metric spaces up to isometry.Mem. Amer. Math. Soc. 161 (2003), no. 766, 78 pp. Zbl 1012.54038, MR 1950332
Reference: [4] Hahn H.: Reelle Funktionen I.Akademische Verlagsgesellschaft, Leipzig, 1932.
Reference: [5] Holmes M.R.: The universal separable metric space of Urysohn and isometric embeddings thereof in Banach spaces.Fund. Math. 140 (1992), 199--223. Zbl 0772.54022, MR 1173763
Reference: [6] Holmes M.R.: The Urysohn space embeds in Banach spaces in just one way.Topology Appl. 155 (2008), no. 14, 1479--1482. Zbl 1149.54007, MR 2435143, 10.1016/j.topol.2008.03.013
Reference: [7] Huhunaišvili G.E.: On a property of Urysohn's universal metric space.(Russian), Dokl. Akad. Nauk USSR (N.S.) 101 (1955), 332--333. MR 0072454
Reference: [8] Isbell J.R.: Six theorems about injective metric spaces.Comment. Math. Helv. 39 (1964), 65--76. Zbl 0151.30205, MR 0182949, 10.1007/BF02566944
Reference: [9] Kalton N.: Extending Lipschitz maps into $\mathcal C(K)$-spaces.Israel J. Math. 162 (2007), 275--315. MR 2365864, 10.1007/s11856-007-0099-2
Reference: [10] Katětov M.: On universal metric spaces.in General Topology and its Relations to Modern Analysis and Algebra, VI (Prague, 1986), Z. Frolík (Ed.), Helderman Verlag, Berlin, 1988, pp. 323--330. MR 0952617
Reference: [11] Kirk W., Sims B., Eds.: Introduction to hyperconvex spaces.in Handbook of Metric Fixed Point Theory, Chapter 13, Kluwer Academic Publishers, Dordrecht, 2001. MR 1904271
Reference: [12] Melleray J.: On the geometry of Urysohn's universal metric space.Topology Appl. 154 (2007), 384--403. Zbl 1113.54017, MR 2278687, 10.1016/j.topol.2006.05.005
Reference: [13] Melleray J.: Some geometric and dynamical properties of the Urysohn space.Topology Appl. 155 (2008), no. 14, 1531--1560. MR 2435148, 10.1016/j.topol.2007.04.029
Reference: [14] Pestov V.: Dynamics of infinite-dimensional groups. The Ramsey-Dvoretzky-Milman phenomenon.University Lecture Series 40, AMS, Providence, RI, 2006. Zbl 1123.37003, MR 2277969
Reference: [15] Urysohn P.S.: Sur un espace métrique universel.Bull. Sci. Math. 51 (1927), 43--64, 74--96.
Reference: [16] Uspenskij V.V.: On the group of isometries of the Urysohn universal metric space.Comment. Math. Univ. Carolin. 31 (1990), no. 1, 181--182. Zbl 0699.54011, MR 1056185
Reference: [17] Uspenskij V.V.: The Urysohn universal metric space is homeomorphic to a Hilbert space.Topology Appl. 139 (2004), no. 1--3, 145--149. Zbl 1062.54036, MR 2051102, 10.1016/j.topol.2003.09.008
Reference: [18] Uspenskij V.V.: On subgroups of minimal topological groups.Topology Appl. 155 (2008), 1580--1606. Zbl 1166.22002, MR 2435151, 10.1016/j.topol.2008.03.001
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_50-2009-3_11.pdf 313.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo