Full entry |
PDF
(1.9 MB)
Feedback

marginal problem; algorithm

References:

[1] Cheeseman P.: **A method of computing generalized Bayesian probability values of expert systems**. In: Proceedings of the 6-th Joint Conference on Artificial Intelligence (IJCAI-83), Karlsruhe, pp. 198–202

[2] Deming W. E., Stephan F. F.: **On a least square adjustment of sampled frequency table when the expected marginal totals are known**. Ann. Math. Statist. 11 (1940), 427–444 DOI 10.1214/aoms/1177731829 | MR 0003527

[3] Gilio A., Ingrassia S.: **Geometrical aspects in checking coherence of probability assessments**. In: IPMU’96: Proceedings of the 6th International IPMU Conference (B. Bouchon–Meunier, M. Delgado, J. L. Verdegay, M. A. Vila, R. Yager, eds.), Granada 1996, pp. 55–59

[4] Coletti G., Scozzafava R.: **Characterization of coherent conditional probabilities as a tool for their assessment and extension**. Internat. J. Uncertainty, Fuzziness and Knowledge–Based Systems, 4 (1996), 2, 103–127 DOI 10.1142/S021848859600007X | MR 1390898 | Zbl 1232.03010

[5] Kellerer H. G.: **Verteilungsfunktionen mit gegebenen Marginalverteilungen**. Z. Wahrsch. verw. Gebiete 3 (1964), 247–270 DOI 10.1007/BF00534912 | MR 0175158 | Zbl 0126.34003

[6] Kříž O.: **Invariant moves for constructing extensions of marginals**. In: IPMU’94: Proceedings of the 5th International IPMU Conference (B. Bouchon–Meunier, R. Yager, eds.), Paris 1994, pp. 984–989

[7] Kříž O.: **Optimizations on finite–dimensional distributions with fixed marginals**. In: WUPES 94: Proceedings of the 3-rd Workshop on Uncertainty Processing (R. Jiroušek, ed.), Třešť 1994, pp. 143–156

[8] Kříž O.: **Marginal problem on finite sets**. In: IPMU’96: Proceedings of the 6-th International IPMU Conference (B. Bouchon–Meunier, M. Delgado, J. L. Verdegay, M. A. Vila, R. Yager, eds.), Granada 1996, Vol. II, pp. 763–768

[9] Kříž O.: **Inconsistent marginal problem on finite sets**. In: Distributions with Given Marginals and Moment Problems (J. Štěpán, V. Beneš, eds.), Kluwer Academic Publishers, Dordrecht – Boston – London 1997, pp. 235–242 Zbl 0907.60003

[10] Scozzafava R.: **A probabilistic background for the management of uncertainty in Artificial Intelligence**. European J. Engineering Education 20 (1995), 3, 353–363 DOI 10.1080/03043799508923366

[11] Vicig P.: **An algorithm for imprecise conditional probability assesment in expert systems**. In: IPMU’96: Proceedings of the 6-th International IPMU Conference (B. Bouchon–Meunier, M. Delgado, J. L. Verdegay, M. A. Vila, R. Yager, eds.), Granada, 1996, Vol. I, pp. 61–66